Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Electronic Devices and Semiconductor Manufacturing

Study Of Direct Semiconductor Materials For An Optically Controlled Switch, Sung Taek Ko Apr 1989

Study Of Direct Semiconductor Materials For An Optically Controlled Switch, Sung Taek Ko

Electrical & Computer Engineering Theses & Dissertations

A model for a bulk GaAs photoconductive switch has been developed and solved to determine the performance of the device in closing and opening switch applications. The GaAs material has been characterized by deep level transient spectroscopy (DLTS). Two electron traps (EL2 and EL5) and one hole trap (CuB} have been detected and were included in the model. Simulation studies are performed on several GaAs switch systems composed of different combinations and density of deep levels to investigate the influence of deep traps in a photoconductive switch system. The electron occupancy of each deep trap is traced in …


Gaas Photoconductive Closing Switches With High Dark Resistance And Microsecond Conductivity Decay, M. S. Mazzola, K. H. Schoenbach, V. K. Lakdawala, R. Germer, G. M. Loubriel, F. J. Zutavern Jan 1989

Gaas Photoconductive Closing Switches With High Dark Resistance And Microsecond Conductivity Decay, M. S. Mazzola, K. H. Schoenbach, V. K. Lakdawala, R. Germer, G. M. Loubriel, F. J. Zutavern

Electrical & Computer Engineering Faculty Publications

Silicon-doped n-type gallium arsenide crystals, compensated with diffused copper, were studied with respect to their application as photoconductive, high-power closing switches. The attractive features of GaAs:Cu switches are their high dark resistivity, their efficient activation with Nd:YAG laser radiation, and their microsecond conductivity decay time constant. In the authors' experiment, electric fields are high as 19 kV/cm were switched, and current densities of up to 10 kA/cm2 were conducted through a closely compensated crystal. At field strengths greater than approximately 10 kV/cm, a voltage `lock-on' effect was observed.


Nanosecond Optical Quenching Of Photoconductivity In A Bulk Gaas Switch, M. S. Mazzola, K. H. Schoenbach, V. K. Lakdawala, S. T. Ko Jan 1989

Nanosecond Optical Quenching Of Photoconductivity In A Bulk Gaas Switch, M. S. Mazzola, K. H. Schoenbach, V. K. Lakdawala, S. T. Ko

Electrical & Computer Engineering Faculty Publications

Persistent photoconductivity in copper-compensated, silicon-doped semi-insulating gallium arsenide with a time constant as large as 30 µs has been excited by sub-band-gap laser radiation of photon energy greater than 1 eV. This photoconductivity has been quenched on a nanosecond time scale by laser radiation of photon energy less than 1 eV. The proven ability to turn the switch conductance on and off on command, and to scale the switch to high power could make this semiconductor material the basis of an optically controlled pulsed-power closing and opening switch.


Integrated Circuits Interconnect Metallization For The Submicron Age, Kamesh V. Gadepally, Roger M. Hawk Jan 1989

Integrated Circuits Interconnect Metallization For The Submicron Age, Kamesh V. Gadepally, Roger M. Hawk

Journal of the Arkansas Academy of Science

The interconnect metallization being used by the semiconductor industry has been aluminum or aluminum silicon. Aluminum silicon is being replaced by aluminum copper and aluminum copper silicon, due to its superior resistance to electromigration and hillock growth. This paper discusses the implementation of aluminum copper/silicon alloys in semiconductor processing, along with a review of the problems and advantages of the same.


Design Of The Electronics And Optics Needed To Support Charge-Coupled Devices : A Project Report ..., Kah Yep Zee Jan 1989

Design Of The Electronics And Optics Needed To Support Charge-Coupled Devices : A Project Report ..., Kah Yep Zee

University of the Pacific Theses and Dissertations

Over the last five years, charge-coupled devices (CCD) have been improved dramatically in terms of sensitivity, manufacturability and particularly, cost. This has enabled them to be used economically in many more industrial and commercial electronic imaging processes. They are found in products ranging from video cameras to satellite-based camera systems. This has sparked my interests in these devices, and with a great deal of encouragement from Dr. Turpin, I decided to base my Master's thesis/project on a CCD. The project was mainly based on the design of the electronics and optics needed to support a CCD. The particular circuit design …