Open Access. Powered by Scholars. Published by Universities.®

Selected Works

Limiter

2012

Articles 1 - 2 of 2

Full-Text Articles in Electronic Devices and Semiconductor Manufacturing

Recovery Time Of The Schottky-Pin Limiter, Chin-Leong Lim Oct 2012

Recovery Time Of The Schottky-Pin Limiter, Chin-Leong Lim

Chin-Leong Lim

The Schottky-PIN limiter has a ~8dB lower limiting threshold than the self-biased PIN limiter. Following the cessation of overdrive, the limiter requires some time to return to a low-loss state. This transitory state, which is known as the recovery time or blind/dead time, disrupts communication and causes information loss. Unlike the self-biased PIN limiter, there is a dearth of information pertaining to the recovery time of the PIN-Schottky limiter. This work characterizes the most popular form of the PIN-Schottky limiter and also proposes a simple modification to speed up its recovery time. We measured recovery times of >2000uS and 130uS …


Reduce Losses In Rf Schottky-Pin Limiter Circuits, Chin-Leong Lim Oct 2012

Reduce Losses In Rf Schottky-Pin Limiter Circuits, Chin-Leong Lim

Chin-Leong Lim

Limiters can protect wireless receivers from physical damage and information loss. The Schottky-PIN limiter is especially protective because its limiting threshold is ~10dB lower than that of the self-biased PIN limiter. Unfortunately, the limiter diodes have parasitic capacitances that create insertion loss. Moreover, the extra diode in the Schottky-PIN limiter increases its loss over that of the PIN diode-only limiter. Techniques to minimize the parasitic capacitances include using bare chip, air cavity packaging, diode stacking, mesa construction, isolating the Schottky diode from the signal path and connecting the diodes to a low impedance node. But the aforementioned techniques either sacrifice …