Open Access. Powered by Scholars. Published by Universities.®

Selected Works

2012

Discipline
Institution
Keyword
Publication
File Type

Articles 1 - 30 of 39

Full-Text Articles in Electronic Devices and Semiconductor Manufacturing

Z-Source Inverter For Automotive Applications, Omar Ellabban, Joeri Van Mierlo Dec 2012

Z-Source Inverter For Automotive Applications, Omar Ellabban, Joeri Van Mierlo

Omar Ellabban

No abstract provided.


Capacitor Voltage Control Techniques Of The Z-Source Inverter: A Comparative Study, Omar Ellabban, Joeri Van Mierlo, Philippe Lataire Dec 2012

Capacitor Voltage Control Techniques Of The Z-Source Inverter: A Comparative Study, Omar Ellabban, Joeri Van Mierlo, Philippe Lataire

Omar Ellabban

The Z-source inverter (ZSI) is a recently proposed single-stage power conversion topology. It adds voltage boost capability for complementing the usual voltage buck operation of a traditional voltage source inverter (VSI) with improved reliability. In this paper, a single-loop and dual-loop capacitor voltage control techniques for the ZSI are digitally designed based on a third order small signal model of the ZSI, implemented using a digital signal processor (DSP) and compared. Simulation and experimental results of a 30 kW ZSI during input voltage changes, load disturbances and steady state operations are presented and compared. The results show that the dual-loop …


Multi-Hole Waveguide Directional Couplers, Mahmoud Moghavvemi, Hossein Ameri Mahabadi, Farhang Alijani Nov 2012

Multi-Hole Waveguide Directional Couplers, Mahmoud Moghavvemi, Hossein Ameri Mahabadi, Farhang Alijani

Hossein Ameri Mahabadi

1. Introduction The directional couplers are inherently assumed as four-port devices, which consisted of two transmission lines that are electromagnetically coupled to each other. The first port is named as input, and the second one as output or transmitted, the third one as sampling or coupled and the fourth one as isolated or terminated. By using a special design the input power is divided between output and coupled port in a certain ratio named coupling factor. The required value for coupling factor P1/P3 defines the range of applications for directional couplers. Based on the application, coupling factor could be any …


Recovery Time Of The Schottky-Pin Limiter, Chin-Leong Lim Oct 2012

Recovery Time Of The Schottky-Pin Limiter, Chin-Leong Lim

Chin-Leong Lim

The Schottky-PIN limiter has a ~8dB lower limiting threshold than the self-biased PIN limiter. Following the cessation of overdrive, the limiter requires some time to return to a low-loss state. This transitory state, which is known as the recovery time or blind/dead time, disrupts communication and causes information loss. Unlike the self-biased PIN limiter, there is a dearth of information pertaining to the recovery time of the PIN-Schottky limiter. This work characterizes the most popular form of the PIN-Schottky limiter and also proposes a simple modification to speed up its recovery time. We measured recovery times of >2000uS and 130uS …


Reduce Losses In Rf Schottky-Pin Limiter Circuits, Chin-Leong Lim Oct 2012

Reduce Losses In Rf Schottky-Pin Limiter Circuits, Chin-Leong Lim

Chin-Leong Lim

Limiters can protect wireless receivers from physical damage and information loss. The Schottky-PIN limiter is especially protective because its limiting threshold is ~10dB lower than that of the self-biased PIN limiter. Unfortunately, the limiter diodes have parasitic capacitances that create insertion loss. Moreover, the extra diode in the Schottky-PIN limiter increases its loss over that of the PIN diode-only limiter. Techniques to minimize the parasitic capacitances include using bare chip, air cavity packaging, diode stacking, mesa construction, isolating the Schottky diode from the signal path and connecting the diodes to a low impedance node. But the aforementioned techniques either sacrifice …


Speed Sensorless Torque Control Of An Ipmsm Drive With Online Stator Resistance Estimation Using Reduced Order Ekf, Emad Gameil Shehata E. G. Shehata Oct 2012

Speed Sensorless Torque Control Of An Ipmsm Drive With Online Stator Resistance Estimation Using Reduced Order Ekf, Emad Gameil Shehata E. G. Shehata

Emad Gameil Shehata E. G. Shehata

Speed sensorless control of an interior permanent magnet synchronous motor (IPMSM) based on direct torque control (DTC) is proposed in this paper. The rotor speed and position of the IPMSM are estimated based on an active flux concept, where, the active flux vector position is identical to the rotor position. The proposed algorithm does not require neither high frequency injection signal nor complicated schemes even at vary low speed operation. Torque/ flux sliding mode controller (SMC) combined with space vector modulation is proposed to improve the performance of the classical DTC. Stator resistance value is required for a stator flux …


Digital Control Of Three Phase Three-Stage Hybrid Multilevel Inverter, Saad Mekhilef Sep 2012

Digital Control Of Three Phase Three-Stage Hybrid Multilevel Inverter, Saad Mekhilef

Saad Mekhilef

Three-stage 18-level hybrid inverter design with novel control method is presented. The inverter consists of main high-, medium-, and low-voltage stages connected in series from the output side. The high-voltage stage is a three-phase, six-switch conventional subinverter. Themedium- and low-voltage stages are made of three-level subinverters constructed by H-bridge units. The proposed control strategy assumes a reference input voltage vector and aims to approximate it to the nearest inverter vector. The control concept is based on holding the high-voltage state as long as it is feasible to do so. The reference voltage vector has been represented in a 60 -spaced …


Vacuum Microelectronic Integrated Differential Amplifier, S. Hsu, W. Kang, J. Davidson, J. Huang, David Kerns, Jr. Aug 2012

Vacuum Microelectronic Integrated Differential Amplifier, S. Hsu, W. Kang, J. Davidson, J. Huang, David Kerns, Jr.

David V. Kerns

Reported is a novel vacuum field emission transistor (VFET) differential amplifier (diff-amp) utilising nanocrystalline diamond emitters with self-aligned gate partitions. The integrated VFET diff-amp was fabricated by a dual-mask self-aligned mould transfer method in conjunction with chemical vapour deposited nanodiamond. Identical pairs of devices with well-matched field emission transistor characteristics were obtained, realising a negligible common-mode gain, high differential-mode gain, and large common-mode rejection ratio (CMRR) of 55 dB. The emission current was validated by a modified Fowler-Nordheim equation in transistor configuration, and the CMRR was modelled by an equivalent half-circuit with the calculated result found to agree well with …


Free Standing Gan Nano Membrane By Laser Liftoff Method, Liang Tang, Yuefeng Wang, Gary Cheng, Michael Manfra, Timothy Sands Aug 2012

Free Standing Gan Nano Membrane By Laser Liftoff Method, Liang Tang, Yuefeng Wang, Gary Cheng, Michael Manfra, Timothy Sands

Yuefeng Wang

In this work, we present a method able to fabricate thin GaN nanomembranes fit for device applications. Starting from commercial GaN on sapphire substrates, MBE was used to deposit a sacrificial layer, which comprises of a superlattice of InN/InGaN, after which thin a GaN film of hundreds of nanometers thickness was grown on top. Pulsed laser irridiation with photon energy of 2.3eV gives rise to the controlled decomposition of the sacrificial intermediate layer, which can be followed by easy separation of the top GaN membrane from the substrate. This process can be used to manufacture GaN membranes with low defect …


Terahertz And Microwave Detection Using Metallic Single Wall Carbon Nanotubes, Enrique Carrion Aug 2012

Terahertz And Microwave Detection Using Metallic Single Wall Carbon Nanotubes, Enrique Carrion

Enrique A Carrion

Carbon nanotubes (CNTs) are promising nanomaterials for high frequency applications due to their unique physical characteristics. CNTs have a low heat capacity, low intrinsic capacitance, and incredibly fast thermal time constants. They can also exhibit ballistic transport at low bias, for both phonons and electrons, as evident by their fairly long mean free paths. However, despite the great potential they present, the RF behavior of these nanostructures is not completely understood. In order to explore this high frequency regime we studied the microwave (MW) and terahertz (THz) response of individual and bundled single wall nanotube based devices. This thesis is …


Power Mems And Microengines, Alan Epstein, Stephen Senturia, G. Ananthasuresh, Arturo Ayon, Kenneth Breuer, Kuo-Shen Chen, Fredric Ehrich, Gautam Gauba, Reza Ghodssi, C. Groshenry, Stuart Jacobson, Jeffrey Lang, Chuang-Chia Lin, Amit Mehra, José Oscar Mur-Miranda, Steve Nagle, D. Orr, Ed Piekos, Martin Schmidt, Gregory Shirley, Mark Spearing, Choon Tan, Sheng-Yang Tzeng, Ian Waitz Jul 2012

Power Mems And Microengines, Alan Epstein, Stephen Senturia, G. Ananthasuresh, Arturo Ayon, Kenneth Breuer, Kuo-Shen Chen, Fredric Ehrich, Gautam Gauba, Reza Ghodssi, C. Groshenry, Stuart Jacobson, Jeffrey Lang, Chuang-Chia Lin, Amit Mehra, José Oscar Mur-Miranda, Steve Nagle, D. Orr, Ed Piekos, Martin Schmidt, Gregory Shirley, Mark Spearing, Choon Tan, Sheng-Yang Tzeng, Ian Waitz

José Oscar Mur-Miranda

MIT is developing a MEMS-based gas turbine generator. Based on high speed rotating machinery, this 1 cm diameter by 3 mm thick SiC heat engine is designed to produce 10-20 W of electric power while consuming 10 grams/hr of H2. Later versions may produce up to 100 W using hydrocarbon fuels. The combustor is now operating and an 80 W micro-turbine has been fabricated and is being tested. This engine can be considered the first of a new class of MEMS device, power MEMS, which are heat engines operating at power densities similar to those of the best large scale …


Degradation Uniformity Of Rf-Power Gaas Phemts Under Electrical Stress, Anita Villanueva, Jesus Del Alamo, Takayuki Hisaka, Kazuo Hayashi, Mark Somerville Jul 2012

Degradation Uniformity Of Rf-Power Gaas Phemts Under Electrical Stress, Anita Villanueva, Jesus Del Alamo, Takayuki Hisaka, Kazuo Hayashi, Mark Somerville

Mark Somerville

We have studied the electrical degradation of RF-power PHEMTs by means of in situ 2-D light-emission measurements. Electroluminescence originates in the recombination of holes that have been generated by impact ionization. The local light intensity, thus, maps the electric-field distribution at the drain side of the device. This allows us to probe the uniformity of electrical degradation due to electric-field-driven mechanisms. We find that electrical degradation proceeds in a highly nonuniform manner across the width of the device. In an initial phase, degradation takes place preferentially toward the center of the gate finger. In advanced stages of degradation, the edges …


Determining Dominant Breakdown Mechanisms In Inp Hemts, Mark Somerville, Chris Putnam, Jesus Del Alamo Jul 2012

Determining Dominant Breakdown Mechanisms In Inp Hemts, Mark Somerville, Chris Putnam, Jesus Del Alamo

Mark Somerville

We present a new technique for determining the dominant breakdown mechanism in InAlAs-InGaAs high-electron mobility transistors. By exploiting both the temperature dependence and the bias dependence of different physical mechanisms, we are able to discriminate impact ionization gate current from tunneling and thermionic field emission gate current in these devices. Our results suggest that the doping level of the supply layers plays a key role in determining the relative importance of these two effects.


Film Thickness Constraints For Manufacturable Strained Silicon Cmos, J. Fiorenza, G. Braithwaite, C. Leitz, M. Currie, J. Yap, F. Singaporewala, V. Yang, T. Langdo, J. Carlin, Mark Somerville, A. Lochtefeld, H. Badawi, M. Bulsara Jul 2012

Film Thickness Constraints For Manufacturable Strained Silicon Cmos, J. Fiorenza, G. Braithwaite, C. Leitz, M. Currie, J. Yap, F. Singaporewala, V. Yang, T. Langdo, J. Carlin, Mark Somerville, A. Lochtefeld, H. Badawi, M. Bulsara

Mark Somerville

This paper studies the effect of the strained silicon thickness on the characteristics of strained silicon MOSFETs on SiGe virtual substrates. NMOSFETs were fabricated on strained silicon substrates with various strained silicon thicknesses, both above and below the strained silicon critical thickness. The low field electron mobility and subthreshold characteristics of the devices were measured. Low field electron mobility is increased by about 1.8 times on all wafers and is not significantly degraded on any of the samples, even for a strained silicon thickness far greater than the critical thickness. From the subthreshold characteristics, however, it is shown that the …


Physical Mechanisms Limiting The Manufacturing Uniformity Of Millimeter-Wave Power Inp Hemt's, Sergei Krupenin, Roxann Blanchard, Mark Somerville, Jesus Del Alamo, K. Duh, Pane Chao Jul 2012

Physical Mechanisms Limiting The Manufacturing Uniformity Of Millimeter-Wave Power Inp Hemt's, Sergei Krupenin, Roxann Blanchard, Mark Somerville, Jesus Del Alamo, K. Duh, Pane Chao

Mark Somerville

We have developed a methodology to diagnose the physical mechanisms limiting the manufacturing uniformity of millimeter-wave power InAlAs/InGaAs HEMT's on InP. A statistical analysis was carried out on dc figures of merit obtained from a large number of actual devices on an experimental wafer. Correlation studies and principal component analysis of the results indicated that variations in Si delta-doping concentration introduced during molecular-beam epitaxy accounted for more than half of the manufacturing variance. Variations in the gate-source distance that is determined by the electron-beam alignment in the gate formation process were found to be the second leading source of manufacturing …


Strained Si On Insulator Technology: From Materials To Devices, T. Langdo, M. Currie, Z.-Y. Cheng, J. Fiorenza, M. Erdtmann, G. Braithwaite, C. Leitz, C. Vineis, J. Carlin, A. Lochtefeld, M. Bulsara, Isaac Lauer, Dimitri Antoniadis, Mark Somerville Jul 2012

Strained Si On Insulator Technology: From Materials To Devices, T. Langdo, M. Currie, Z.-Y. Cheng, J. Fiorenza, M. Erdtmann, G. Braithwaite, C. Leitz, C. Vineis, J. Carlin, A. Lochtefeld, M. Bulsara, Isaac Lauer, Dimitri Antoniadis, Mark Somerville

Mark Somerville

SiGe-free strained Si on insulator (SSOI) is a new material system that combines the carrier transport advantages of strained Si with the reduced capacitance and improved scalability of thin film silicon on insulator (SOI). We demonstrate fabrication of 20% Ge equivalent strain level SSOI substrates with Si thicknesses of 100 and 400 Å by hydrogen-induced layer transfer of strained Si layers from high quality graded SiGe virtual substrates. The substrate properties are excellent: wafer scale strained Si film thickness uniformities are better than 8%, strained Si surface roughnesses are better than 0.5 nm RMS, and robust tensile strain levels are …


Fully Depleted N-Mosfets On Supercritical Thickness Strained Soi, Isaac Lauer, T. Langdo, Z.-Y. Cheng, J. Fiorenza, G. Braithwaite, M. Currie, C. Leitz, A. Lochtefeld, H. Badawi, M. Bulsara, Mark Somerville, Dimitri Antoniadis Jul 2012

Fully Depleted N-Mosfets On Supercritical Thickness Strained Soi, Isaac Lauer, T. Langdo, Z.-Y. Cheng, J. Fiorenza, G. Braithwaite, M. Currie, C. Leitz, A. Lochtefeld, H. Badawi, M. Bulsara, Mark Somerville, Dimitri Antoniadis

Mark Somerville

Strained silicon-on-insulator (SSOI) is a new material system that combines the carrier transport advantages of strained Si with the reduced parasitic capacitance and improved MOSFET scalability of thin-film SOI. We demonstrate fabrication of highly uniform SiGe-free SSOI wafers with 20% Ge equivalent strain and report fully depleted n-MOSFET results. We show that enhanced mobility is maintained in strained Si films transferred directly to SiO2 from relaxed Si0.8Ge0.2 virtual substrates, even after a generous MOSFET fabrication thermal budget. Further, we find the usable strained-Si thickness of SSOI significantly exceeds the critical thickness of strained Si/SiGe without deleterious leakage current effects typically …


An Autozeroing Floating-Gate Amplifier, Paul Hasler, Bradley Minch, Chris Diorio Jul 2012

An Autozeroing Floating-Gate Amplifier, Paul Hasler, Bradley Minch, Chris Diorio

Bradley Minch

We have developed a bandpass floating-gate amplifier that uses tunneling and pFET hot-electron injection to set its dc operating point adaptively. Because the hot-electron injection is an inherent part of the pFET's behavior, we obtain this adaptation with no additional circuitry. Because the gate currents are small, the circuit exhibits a high-pass characteristic with a cutoff frequency less than 1 Hz. The high-frequency cutoff is controlled electronically, as is done in continuous-time filters. We have derived analytical models that completely characterize the amplifier and that are in good agreement with experimental data for a wide range of operating conditions and …


Integration Of Chemical Sensing And Electrowetting Actuation On Chemoreceptive Neuron Mos (Cνmos) Transistors, Nick Shen, Zengtao Liu, Blake Jacquot, Bradley Minch, Edwin Kan Jul 2012

Integration Of Chemical Sensing And Electrowetting Actuation On Chemoreceptive Neuron Mos (Cνmos) Transistors, Nick Shen, Zengtao Liu, Blake Jacquot, Bradley Minch, Edwin Kan

Bradley Minch

An integration of chemical sensors and electrowetting actuators based on the chemoreceptive neuron MOS (CνMOS) transistors has brought forth a novel system-on-chip approach to the microfluidic system. The extended floating-gate structure of the CνMOS transistors enables monolithic sensing and actuating schemes. The sensors with generic chemical receptive areas have been characterized with various fluids, and have demonstrated a high sensitivity from the current differentiation and a large dynamic range from threshold-voltage shifts in sensing polar and electrolytic liquids. The actuators have illustrated valve functions based on contact-angle modification by nonvolatile charge injection into the channel wall. Electrochemical models for sensing …


Charge-Based Chemical Sensors: A Neuromorphic Approach With Chemoreceptive Neuron Mos (Cvmos) Transistors, Nick Shen, Zengtao Liu, Chungho Lee, Bradley Minch, Edwin Kan Jul 2012

Charge-Based Chemical Sensors: A Neuromorphic Approach With Chemoreceptive Neuron Mos (Cvmos) Transistors, Nick Shen, Zengtao Liu, Chungho Lee, Bradley Minch, Edwin Kan

Bradley Minch

A novel chemoreceptive neuron MOS (CνMOS) transistor with an extended floating-gate structure has been designed with several individual features that significantly facilitate system integration of chemical sensing. We have fabricated CνMOS transistors with generic molecular receptive areas and have characterized them with various fluids. We use an insulating polymer layer to provide physical and electrical isolation for sample fluid delivery. Experimental results from these devices have demonstrated both high sensitivity via current differentiation and large dynamic range from threshold voltage shifts in sensing both polar and electrolytic liquids. We have established electrochemical models for both steady-state and transient analyses. Our …


Switch Yard Operation In Thermal Power Plant(Katpp Jhalawar Rajasthan), Radhey Shyam Meena Er. Jul 2012

Switch Yard Operation In Thermal Power Plant(Katpp Jhalawar Rajasthan), Radhey Shyam Meena Er.

Radhey Shyam Meena

Switchyard Provides the facilities for switching ,protection & Control of electric power. To handle high Voltage power with proper Safety measures. To isolate the noises coming from the grid with true 50Hz power SWITCH YARD IS IMPORTANT PART IN THERMAL PLANT. IN KALISINDH THERMAL 400KV AND 220KV SWITCH YARD LOCATED.


Analysis And Implementation Of Transformerless Lcl Resonant Power Supply For Ozone Generation, Saad Mekhilef May 2012

Analysis And Implementation Of Transformerless Lcl Resonant Power Supply For Ozone Generation, Saad Mekhilef

Saad Mekhilef

This paper describes the analysis and design of an LCL resonant power supply for ozone generation. The main advantage of the proposed topology is the absence of high-voltage transformer; the high voltage gain is achievable by means of doubleresonance phenomena. Furthermore, the bandwidth is wider than the ordinary LC and its phase difference is constant over specific frequency range; as a result, an open-loop operation can be implemented. The complete analysis and design procedure of the power supply is presented. The design procedure is verified by implementing the power supply to drive a dielectric barrier discharge prototype ozone chamber. The …


Itex2012 Gold Medal, Prof.Dr. Mahmoud Magha Vvemi, Hossein Ameri Mahabadi, Aliyar Attaran May 2012

Itex2012 Gold Medal, Prof.Dr. Mahmoud Magha Vvemi, Hossein Ameri Mahabadi, Aliyar Attaran

Hossein Ameri Mahabadi

This is to certify that PROF.DR. MAHMOUD MAGHA VVEMI, HOSSEIN AMERI, ALIYAR ATTARAN has been awarded the ITEX GOLD MEDAL for the invention SIGNAL INTEGRITY ENHANCEMENT IN C-BAND RADIO LINK SYSTEM CONSIDERING JITTER AND PHASE PRECISION at the 23rd International Invention, Innovation & Technology Exhibition ITEX2012 Kuala Lumpur, Malaysia 17th_ 19th May 2012


Evaluation And Design Optimization Of Piezoresistive Gauge Factor Of Thick-Film Resistors, Sherra E. Kerns, David V. Kerns, C Song, J. L. Davidson, W. P. Kang Apr 2012

Evaluation And Design Optimization Of Piezoresistive Gauge Factor Of Thick-Film Resistors, Sherra E. Kerns, David V. Kerns, C Song, J. L. Davidson, W. P. Kang

Sherra E. Kerns

On the basis of the analysis of all the thick- film design methodologies, the authors designed a test sample on which four different length-over-width ratios of resistors were designed. They found that the length-over-width ratio will substantially affect the gauge factor in some cases, in contrast to prior research. This can be modeled to generate a linear predictive model, The sensors designed on the insulator and the sensors underneath the insulator were also studied in order to simulate the multilayer hybrid technology and study the effects of insulator-resistor-substrate surface interaction. It is demonstrated that design techniques can affect the strain …


Simulation Of Gallium Arsenide Electroluminescence Spectra In Avalanche Breakdown Using Self-Absorption And Recombination Models, David Kerns, Sherra Kerns, M Lahbabi, A Ahaitouf, E Abarkan, M Fliyou, A Hoffmann, J Charles, Bharat Bhuva Apr 2012

Simulation Of Gallium Arsenide Electroluminescence Spectra In Avalanche Breakdown Using Self-Absorption And Recombination Models, David Kerns, Sherra Kerns, M Lahbabi, A Ahaitouf, E Abarkan, M Fliyou, A Hoffmann, J Charles, Bharat Bhuva

Sherra E. Kerns

Light emission from gallium arsenide (GaAs) p–n junctions biased in avalanche breakdown have been modeled over the range of 1.4–3.4 eV. The model emphasizes direct and indirect recombination processes and bulk self-absorption. Comparisons between measured and simulated spectra for sample junctions from custom and commercially fabricated GaAs devices demonstrate that the model is simple, accurate, and consistent with fundamental physical device theory. The model also predicts the junction depth with accuracy.


Measurement Of Metal Migration On Thick Film Piezoresistors And Their Termination, David V. Kerns, C Song, J L. Davidson, D L. Kinser Apr 2012

Measurement Of Metal Migration On Thick Film Piezoresistors And Their Termination, David V. Kerns, C Song, J L. Davidson, D L. Kinser

David V. Kerns

Metal migration from the thick-film termination can affect not only the electrical characteristics but also the gauge factor or piezoresistive coefficient of thick-film sensors. Four sets of sensors with different ratios were designed to test the influence of the terminal metal migration effects on the gauge factors and resistivity of thick-film resistors. In all the cases, the shortest resistors have a lower gauge factor and a large deviation ofresistances. The longer resistors will have better electrical parameters. SEM (scanning electron microscope) studies showed this interaction at the interface between the terminal and the resistor. The same distance of terminal diffusion …


A Study Of Diamond Field Emission Using Micro-Patterned Monolithic Diamond Tips With Different Sp2 Contents, David Kerns, A Wisitsora-At, W Kang, J Davidson Apr 2012

A Study Of Diamond Field Emission Using Micro-Patterned Monolithic Diamond Tips With Different Sp2 Contents, David Kerns, A Wisitsora-At, W Kang, J Davidson

David V. Kerns

Electron field emission from an array of micro-patterned monolithic diamond tips with varying sp2 content has been systematically investigated. The experimental results show that the field emission characteristics can be improved and the turn-on electric field can be reduced more than 50% by increasing sp2 content. Two hypotheses are proposed as an explanation of the effect of sp2 content on the field emission characteristics of diamond tips: the lowering of the work function due to defect-induced band generated bysp2 content in the diamond lattice and an increase in the field enhancement factor due to embedded sp2–diamond–sp2 cascaded microstructures.


Evaluation And Design Optimization Of Piezoresistive Gauge Factor Of Thick-Film Resistors, Sherra E. Kerns, David V. Kerns, C Song, J. L. Davidson, W. P. Kang Apr 2012

Evaluation And Design Optimization Of Piezoresistive Gauge Factor Of Thick-Film Resistors, Sherra E. Kerns, David V. Kerns, C Song, J. L. Davidson, W. P. Kang

David V. Kerns

On the basis of the analysis of all the thick- film design methodologies, the authors designed a test sample on which four different length-over-width ratios of resistors were designed. They found that the length-over-width ratio will substantially affect the gauge factor in some cases, in contrast to prior research. This can be modeled to generate a linear predictive model, The sensors designed on the insulator and the sensors underneath the insulator were also studied in order to simulate the multilayer hybrid technology and study the effects of insulator-resistor-substrate surface interaction. It is demonstrated that design techniques can affect the strain …


Simulation Of Gallium Arsenide Electroluminescence Spectra In Avalanche Breakdown Using Self-Absorption And Recombination Models, David Kerns, Sherra Kerns, M Lahbabi, A Ahaitouf, E Abarkan, M Fliyou, A Hoffmann, J Charles, Bharat Bhuva Apr 2012

Simulation Of Gallium Arsenide Electroluminescence Spectra In Avalanche Breakdown Using Self-Absorption And Recombination Models, David Kerns, Sherra Kerns, M Lahbabi, A Ahaitouf, E Abarkan, M Fliyou, A Hoffmann, J Charles, Bharat Bhuva

David V. Kerns

Light emission from gallium arsenide (GaAs) p–n junctions biased in avalanche breakdown have been modeled over the range of 1.4–3.4 eV. The model emphasizes direct and indirect recombination processes and bulk self-absorption. Comparisons between measured and simulated spectra for sample junctions from custom and commercially fabricated GaAs devices demonstrate that the model is simple, accurate, and consistent with fundamental physical device theory. The model also predicts the junction depth with accuracy.


Analysis Of Scratches Formed On Oxide Surface During Chemical Mechanical Planarization, Jae-Gon Choi, Y. Prasad, In-Kwon Kim, In-Gon Kim, Woo-Jin Kim, Ahmed Busnaina, Jin-Goo Park Apr 2012

Analysis Of Scratches Formed On Oxide Surface During Chemical Mechanical Planarization, Jae-Gon Choi, Y. Prasad, In-Kwon Kim, In-Gon Kim, Woo-Jin Kim, Ahmed Busnaina, Jin-Goo Park

Jin-Goo Park

Scratch formation on patterned oxide wafers during the chemical mechanical planarization process was investigated. Silica and ceria slurries were used for polishing the experiments to observe the effect of abrasives on the scratch formation. Interlevel dielectric patterned wafers were used to study the scratch dimensions, and shallow trench isolation patterned wafers were used to study the effect of polishing parameters, such as pressure and rotational speed (head/platen). Similar shapes of scratches (chatter type) were observed with both types of slurries. The length of the scratch formed might be related to the period of contact between the wafer and the pad. …