Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Electronic Devices and Semiconductor Manufacturing

Ferroelectric Batio3/Srtio3 Multilayered Thin Films For Room-Temperature Tunable Microwave Elements, Ming Liu, Chunrui Ma, Gregory Collins, Jian Liu, Chonglin Chen, Andy D. Alemayehu, Guru Subramanyam, Ying Ding, Jianghua Chen, Chao Dai, Yuan Lin, Melanie W. Cole Mar 2015

Ferroelectric Batio3/Srtio3 Multilayered Thin Films For Room-Temperature Tunable Microwave Elements, Ming Liu, Chunrui Ma, Gregory Collins, Jian Liu, Chonglin Chen, Andy D. Alemayehu, Guru Subramanyam, Ying Ding, Jianghua Chen, Chao Dai, Yuan Lin, Melanie W. Cole

Guru Subramanyam

Ferroelectric BaTiO3/SrTiO3 with optimized c-axis-oriented multilayered thin films were epitaxially fabricated on (001) MgO substrates. The microstructural studies indicate that the in-plane interface relationships between the films as well as the substrate are determined to be (001)SrTiO3//(001)BaTiO3//(001)MgO and [100]SrTiO3//[100]BaTiO3//[100]MgO. The microwave (5 to 18 GHz) dielectric measurements reveal that the multilayered thin films have excellent dielectric properties with large dielectric constant, low dielectric loss, and high dielectric tunability, which suggests that the as-grown ferroelectric multilayered thin films can be developed for room-temperature tunable microwave elements and related device applications.


A Reconfigurable Cpw Bow-Tie Antenna Using An Integrated Ferroelectric Thin Film Varactor, K. C. Pan, Dustin Brown, Guru Subramanyam, R. Penno, H. Jiang, C. H. Zhang, M. Patterson, David Kuhl, Kevin Leedy, Charles Cerny Mar 2015

A Reconfigurable Cpw Bow-Tie Antenna Using An Integrated Ferroelectric Thin Film Varactor, K. C. Pan, Dustin Brown, Guru Subramanyam, R. Penno, H. Jiang, C. H. Zhang, M. Patterson, David Kuhl, Kevin Leedy, Charles Cerny

Guru Subramanyam

A novel printed antenna with a frequency reconfigurable feed network is presented. The antenna consists of a bowtie structure patch radiating element in the inner space of an annulus that is on a nongrounded substrate with a ferroelectric (FE) Barium Strontium Titanate (BST) thin film. The bowtie patch is fed by a coplanar waveguide (CPW) transmission line that also includes a CPW-based BST shunt varactor. Reconfiguration of the compact 8 mm × 8 mm system has been demonstrated by shifting the antenna system’s operating frequency 500 MHz in the 7–9 GHz band by applying a DC voltage bias.


Challenges And Opportunities For Multi-Functional Oxide Thin Films For Voltage Tunable Radio-Frequency/Microwave Components, Guru Subramanyam, M W. Cole, Nian X. Sun, Thottam S. Kalkur, Nick M. Sbrockey, Gary S. Tompa, Xiaomei Guo, Chonglin Chen, S P. Alpay, G A. Rossetti Jr., Kaushik Dayal, Long-Qing Chen, Darrell G. Schlom Jan 2015

Challenges And Opportunities For Multi-Functional Oxide Thin Films For Voltage Tunable Radio-Frequency/Microwave Components, Guru Subramanyam, M W. Cole, Nian X. Sun, Thottam S. Kalkur, Nick M. Sbrockey, Gary S. Tompa, Xiaomei Guo, Chonglin Chen, S P. Alpay, G A. Rossetti Jr., Kaushik Dayal, Long-Qing Chen, Darrell G. Schlom

Guru Subramanyam

There has been significant progress on the fundamental science and technological applications of complex oxides and multiferroics. Among complex oxide thin films, barium strontium titanate (BST) has become the material of choice for room-temperature-based voltage-tunable dielectric thin films, due to its large dielectric tunability and low microwave loss at room temperature. BST thin film varactor technology based reconfigurable radio frequency (RF)/microwave components have been demonstrated with the potential to lower the size, weight, and power needs of a future generation of communication and radar systems. Low-power multiferroic devices have also been recently demonstrated. Strong magneto-electric coupling has also been demonstrated …