Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 11 of 11

Full-Text Articles in Electronic Devices and Semiconductor Manufacturing

A Shade Tolerant Panel Design For Thin Film Photovoltaics, Sourabh Dongaonkar, Muhammad Alam Mar 2013

A Shade Tolerant Panel Design For Thin Film Photovoltaics, Sourabh Dongaonkar, Muhammad Alam

Sourabh Dongaonkar

We analyze the problem of partial shading of thin film photovoltaic (TFPV) panels, using full two dimensional circuit simulations. By accounting for the panel structure and typical array configurations, we can accurately account for the effect of various shading configurations at the cell and panel level. We demonstrate the limitation of external bypass diodes in protecting shaded cells from reverse breakdown, and explore the whole range of shading scenarios and their impact on reverse stress experienced by shaded cells. Based on the analysis, we identify the key aspects of shading problem, and formulate design rules for shadow aware geometrical design …


Reverse Stress Metastability Of Shunt Current In Cigs Solar Cells, Sourabh Dongaonkar, Erik Sheets, Rakesh Agrawal, Muhammad Alam Mar 2013

Reverse Stress Metastability Of Shunt Current In Cigs Solar Cells, Sourabh Dongaonkar, Erik Sheets, Rakesh Agrawal, Muhammad Alam

Sourabh Dongaonkar

Partial shading in thin film solar panels can result in reverse bias stress across shaded cells. Therefore, it is important to understand the effect of such reverse stress in commercially competitive PV technologies such as CIGS. In this paper, we systematically investigate the effect of moderate reverse bias on solution-processed CIGS solar cells. We subject the solar cells to varying degrees of reverse biases and continuously monitor the impact of the stress on dark current. We also explore the relaxation behavior of dark current following passive storage and the long term effect of the shadow stress on power output of …


Cause And Prevention Of Moisture-Induced Degradation Of Resistance Random Access Memory Nanodevices, Albert Chen Jan 2013

Cause And Prevention Of Moisture-Induced Degradation Of Resistance Random Access Memory Nanodevices, Albert Chen

Albert B Chen

Dielectric thin films in nanodevices may absorb moisture, leading to physical changes and property/performance degradation, such as altered data storage and readout in resistance random access memory. Here we demonstrate using a nanometallic memory that such degradation proceeds via nanoporosity, which facilitates water wetting in otherwise nonwetting dielectrics. Electric degradation only occurs when the device is in the charge-storage state, which provides a nanoscale dielectrophoretic force directing H2O to internal field centers (sites of trapped charge) to enable bond rupture and charged hydroxyl formation. While these processes are dramatically enhanced by an external DC or AC field and electron-donating electrodes, …


Demonstration And Modeling Of Multi-Bit Resistance Random Access Memory, Albert Chen Dec 2012

Demonstration And Modeling Of Multi-Bit Resistance Random Access Memory, Albert Chen

Albert B Chen

Although intermediates resistance states are common in resistance random access memory (RRAM), two-way switching among them has not been demonstrated. Using a nanometallic bipolar RRAM, we have illustrated a general scheme for writing/rewriting multi-bit memory using voltage pulses. Stability conditions for accessing intermediate states have also been determined in terms of a state distribution function and the weight of serial load resistance. A multi-bit memory is shown to realize considerable space saving at a modest decrease of switching speed.


Terahertz And Microwave Detection Using Metallic Single Wall Carbon Nanotubes, Enrique Carrion Aug 2012

Terahertz And Microwave Detection Using Metallic Single Wall Carbon Nanotubes, Enrique Carrion

Enrique A Carrion

Carbon nanotubes (CNTs) are promising nanomaterials for high frequency applications due to their unique physical characteristics. CNTs have a low heat capacity, low intrinsic capacitance, and incredibly fast thermal time constants. They can also exhibit ballistic transport at low bias, for both phonons and electrons, as evident by their fairly long mean free paths. However, despite the great potential they present, the RF behavior of these nanostructures is not completely understood. In order to explore this high frequency regime we studied the microwave (MW) and terahertz (THz) response of individual and bundled single wall nanotube based devices. This thesis is …


Power Mems And Microengines, Alan Epstein, Stephen Senturia, G. Ananthasuresh, Arturo Ayon, Kenneth Breuer, Kuo-Shen Chen, Fredric Ehrich, Gautam Gauba, Reza Ghodssi, C. Groshenry, Stuart Jacobson, Jeffrey Lang, Chuang-Chia Lin, Amit Mehra, José Oscar Mur-Miranda, Steve Nagle, D. Orr, Ed Piekos, Martin Schmidt, Gregory Shirley, Mark Spearing, Choon Tan, Sheng-Yang Tzeng, Ian Waitz Jul 2012

Power Mems And Microengines, Alan Epstein, Stephen Senturia, G. Ananthasuresh, Arturo Ayon, Kenneth Breuer, Kuo-Shen Chen, Fredric Ehrich, Gautam Gauba, Reza Ghodssi, C. Groshenry, Stuart Jacobson, Jeffrey Lang, Chuang-Chia Lin, Amit Mehra, José Oscar Mur-Miranda, Steve Nagle, D. Orr, Ed Piekos, Martin Schmidt, Gregory Shirley, Mark Spearing, Choon Tan, Sheng-Yang Tzeng, Ian Waitz

José Oscar Mur-Miranda

MIT is developing a MEMS-based gas turbine generator. Based on high speed rotating machinery, this 1 cm diameter by 3 mm thick SiC heat engine is designed to produce 10-20 W of electric power while consuming 10 grams/hr of H2. Later versions may produce up to 100 W using hydrocarbon fuels. The combustor is now operating and an 80 W micro-turbine has been fabricated and is being tested. This engine can be considered the first of a new class of MEMS device, power MEMS, which are heat engines operating at power densities similar to those of the best large scale …


Determining Dominant Breakdown Mechanisms In Inp Hemts, Mark Somerville, Chris Putnam, Jesus Del Alamo Jul 2012

Determining Dominant Breakdown Mechanisms In Inp Hemts, Mark Somerville, Chris Putnam, Jesus Del Alamo

Mark Somerville

We present a new technique for determining the dominant breakdown mechanism in InAlAs-InGaAs high-electron mobility transistors. By exploiting both the temperature dependence and the bias dependence of different physical mechanisms, we are able to discriminate impact ionization gate current from tunneling and thermionic field emission gate current in these devices. Our results suggest that the doping level of the supply layers plays a key role in determining the relative importance of these two effects.


Strained Si On Insulator Technology: From Materials To Devices, T. Langdo, M. Currie, Z.-Y. Cheng, J. Fiorenza, M. Erdtmann, G. Braithwaite, C. Leitz, C. Vineis, J. Carlin, A. Lochtefeld, M. Bulsara, Isaac Lauer, Dimitri Antoniadis, Mark Somerville Jul 2012

Strained Si On Insulator Technology: From Materials To Devices, T. Langdo, M. Currie, Z.-Y. Cheng, J. Fiorenza, M. Erdtmann, G. Braithwaite, C. Leitz, C. Vineis, J. Carlin, A. Lochtefeld, M. Bulsara, Isaac Lauer, Dimitri Antoniadis, Mark Somerville

Mark Somerville

SiGe-free strained Si on insulator (SSOI) is a new material system that combines the carrier transport advantages of strained Si with the reduced capacitance and improved scalability of thin film silicon on insulator (SOI). We demonstrate fabrication of 20% Ge equivalent strain level SSOI substrates with Si thicknesses of 100 and 400 Å by hydrogen-induced layer transfer of strained Si layers from high quality graded SiGe virtual substrates. The substrate properties are excellent: wafer scale strained Si film thickness uniformities are better than 8%, strained Si surface roughnesses are better than 0.5 nm RMS, and robust tensile strain levels are …


An Autozeroing Floating-Gate Amplifier, Paul Hasler, Bradley Minch, Chris Diorio Jul 2012

An Autozeroing Floating-Gate Amplifier, Paul Hasler, Bradley Minch, Chris Diorio

Bradley Minch

We have developed a bandpass floating-gate amplifier that uses tunneling and pFET hot-electron injection to set its dc operating point adaptively. Because the hot-electron injection is an inherent part of the pFET's behavior, we obtain this adaptation with no additional circuitry. Because the gate currents are small, the circuit exhibits a high-pass characteristic with a cutoff frequency less than 1 Hz. The high-frequency cutoff is controlled electronically, as is done in continuous-time filters. We have derived analytical models that completely characterize the amplifier and that are in good agreement with experimental data for a wide range of operating conditions and …


A Parallel Circuit Model For Multi-State Resistive-Switching Random Access Memory, Albert Chen Jan 2012

A Parallel Circuit Model For Multi-State Resistive-Switching Random Access Memory, Albert Chen

Albert B Chen

Large, rapidly growing literature is available on bipolar resistive-switching random access memories (RRAM) made of myriad of simple and advanced materials. Many of them exhibit similar resistance switching behavior but, until now, no unifying model can allow quantification of their voltage and time responses. Using a simple parallel circuit model, these responses of a newly discovered RRAM made of a thin-film random material are successfully analyzed. The analysis clearly reveals a large population of intermediate states with remarkably similar switching characteristics. Such modeling framework based on simple circuit constructs also appears applicable to several RRAM made of other materials. This …


Purely Electronic Switching With High Uniformity, Resistance Tunability, And Good Retention In Pt-Dispersed Sio2 Thin Films For Reram, Albert Chen Jun 2011

Purely Electronic Switching With High Uniformity, Resistance Tunability, And Good Retention In Pt-Dispersed Sio2 Thin Films For Reram, Albert Chen

Albert B Chen

Resistance switching memory operating by a purely electronic switching mechanism, which was first realized in Pt-dispersed SiO2 thin films, satisfies criteria including high uniformity, fast switching speed, and long retention for non-volatile memory application. This resistive element obeys Ohm's law for the area dependence, but its resistance exponentially increases with the film thickness, which provides new freedom to tailor the device characteristics.