Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 10 of 10

Full-Text Articles in Electronic Devices and Semiconductor Manufacturing

Bi-Directional Vector Variable Gain Amplifier For An X-Band Phased Array Radar Application, Arash Mashayekhi Jan 2014

Bi-Directional Vector Variable Gain Amplifier For An X-Band Phased Array Radar Application, Arash Mashayekhi

Masters Theses 1911 - February 2014

This thesis presents the design, layout, and measurements of a bi-directional amplifier with variable vector (in-phase / quadrature) gain control that will be part of an electronically steered phased array system. The electronically steered phased array has many advantages over the conventional mechanically steered antennas including rapid scanning of the beam and adaptively creating nulls in desired locations. The 10-bit bi-directional Vector Variable Gain Amplifier (VVGA) is part of the transmit and receive module of each antenna element where transmit and receive functionality is determined through a simple switch. The VVGA performs amplification of the IF IQ pair by an …


A Novel Reconfiguration Scheme In Quantum-Dot Cellular Automata For Energy Efficient Nanocomputing, Madhusudan Chilakam Jan 2013

A Novel Reconfiguration Scheme In Quantum-Dot Cellular Automata For Energy Efficient Nanocomputing, Madhusudan Chilakam

Masters Theses 1911 - February 2014

Quantum-Dot Cellular Automata (QCA) is currently being investigated as an alternative to CMOS technology. There has been extensive study on a wide range of circuits from simple logical circuits such as adders to complex circuits such as 4-bit processors. At the same time, little if any work has been done in considering the possibility of reconfiguration to reduce power in QCA devices. This work presents one of the first such efforts when considering reconfigurable QCA architectures which are expected to be both robust and power efficient. We present a new reconfiguration scheme which is highly robust and is expected to …


Sige Millimeter-Wave (W-Band) Down-Converter For Phased Focal Plane Array, Maruthi Nagavalli Yogeesh Jan 2013

Sige Millimeter-Wave (W-Band) Down-Converter For Phased Focal Plane Array, Maruthi Nagavalli Yogeesh

Masters Theses 1911 - February 2014

A millimeter-wave (W-Band) down-converter for Phased Focal Plane Arrays (PFPAs) has been designed and fabricated using the IBM Silicon-Germanium (SiGe) BiCMOS 8HP process technology. The radio frequency (RF) input range of the down-converter chip is from 70 95GHz. The intermediate frequency (IF) range is from 5 30GHz. The local oscillator (LO) frequency is fixed at 65GHz. The down-converter chip has been designed to achieve a conversion gain greater than 20dB, a noise figure (NF) below 10dB and input return loss greater than 10dB. The chip also has novel LO circuitry facilitating LO feed-through among down-converters chips in parallel. This wide …


Critical Area Driven Dummy Fill Insertion To Improve Manufacturing Yield, Nishant Dhumane Jan 2012

Critical Area Driven Dummy Fill Insertion To Improve Manufacturing Yield, Nishant Dhumane

Masters Theses 1911 - February 2014

Non-planar surface may cause incorrect transfer of patterns during lithography. In today’s IC manufacturing, chemical mechanical polishing (CMP) is used for topographical planarization. Since polish rates for metals and oxides are different, dummy metal fills in layout is used to minimize post-CMP thickness variability. Traditional metal fill solutions focus on satisfying density target determined by layout density analysis techniques. These solutions may potentially reduce yield by increasing probability of failure (POF) due to particulate defects and also impact design performance. Layout design solutions that minimize POF and also improve surface planarity via dummy fill insertions have competing requirements for line …


Reformulation Of The Muffin-Tin Problem In Electronic Structure Calculations Within The Feast Framework, Alan R. Levin Jan 2012

Reformulation Of The Muffin-Tin Problem In Electronic Structure Calculations Within The Feast Framework, Alan R. Levin

Masters Theses 1911 - February 2014

This thesis describes an accurate and scalable computational method designed to perform nanoelectronic structure calculations. Built around the FEAST framework, this method directly addresses the nonlinear eigenvalue problem. The new approach allows us to bypass traditional approximation techniques typically used for first-principle calculations. As a result, this method is able to take advantage of standard muffin-tin type domain decomposition techniques without being hindered by their perceived limitations. In addition to increased accuracy, this method also has the potential to take advantage of parallel processing for increased scalability.

The Introduction presents the motivation behind the proposed method and gives an overview …


Gpu Based Lithography Simulation And Opc, Lokesh Subramany Jan 2011

Gpu Based Lithography Simulation And Opc, Lokesh Subramany

Masters Theses 1911 - February 2014

Optical Proximity Correction (OPC) is a part of a family of techniques called Resolution Enhancement Techniques (RET). These techniques are employed to increase the resolution of a lithography system and improve the quality of the printed pattern. The fidelity of the pattern is degraded due to the disparity between the wavelength of light used in optical lithography, and the required size of printed features. In order to improve the aerial image, the mask is modified. This process is called OPC, OPC is an iterative process where a mask shape is modified to decrease the disparity between the required and printed …


On Process Variation Tolerant Low Cost Thermal Sensor Design, Spandana Remarsu Jan 2011

On Process Variation Tolerant Low Cost Thermal Sensor Design, Spandana Remarsu

Masters Theses 1911 - February 2014

Thermal management has emerged as an important design issue in a range of designs from portable devices to server systems. Internal thermal sensors are an integral part of such a management system. Process variations in CMOS circuits cause accuracy problems for thermal sensors which can be fixed by calibration tables. Stand-alone thermal sensors are calibrated to fix such problems. However, calibration requires going through temperature steps in a tester, increasing test application time and cost. Consequently, calibrating thermal sensors in typical digital designs including mainstream desktop and notebook processors increases the cost of the processor. This creates a need for …


Electromagnetic Modeling Of Photolithography Aerial Image Formation Using The Octree Finite Element Method, Seth A. Jackson Jan 2011

Electromagnetic Modeling Of Photolithography Aerial Image Formation Using The Octree Finite Element Method, Seth A. Jackson

Masters Theses 1911 - February 2014

Modern semiconductor manufacturing requires photolithographic printing of subillumination wavelength features in photoresist via electromagnetic energy scattered by complicated photomask designs. This results in aerial images which are subject to constructive and destructive wave interference, as well as electromagnetic resonances in the photomask features. This thesis proposes a 3-D full-wave frequency domain nonconformal Octree mesh based Finite Element Method (OFEM) electromagnetic scattering solver in combination with Fourier Optics to accurately simulate the entire projection photolithography system, from illumination source to final image intensity in the photoresist layer. A rapid 1-irregular octree based geometry model mesher is developed and shown to perform …


Efficient Modeling Techniques For Time-Dependent Quantum System With Applications To Carbon Nanotubes, Zuojing Chen Jan 2010

Efficient Modeling Techniques For Time-Dependent Quantum System With Applications To Carbon Nanotubes, Zuojing Chen

Masters Theses 1911 - February 2014

The famous Moore's law states: Since the invention of the integrated circuit, the number of transistors that can be placed on an integrated circuit has increased exponentially, doubling approximately every two years. As a result of the downscaling of the size of the transistor, quantum effects have become increasingly important while affecting significantly the device performances. Nowadays, at the nanometer scale, inter-atomic interactions and quantum mechanical properties need to be studied extensively. Device and material simulations are important to achieve these goals because they are flexible and less expensive than experiments. They are also important for designing and characterizing new …


Terahertz And Microwave Detection Using Metallic Single Wall Carbon Nanotubes, Enrique A. Carrion Jan 2010

Terahertz And Microwave Detection Using Metallic Single Wall Carbon Nanotubes, Enrique A. Carrion

Masters Theses 1911 - February 2014

Carbon nanotubes (CNTs) are promising nanomaterials for high frequency applications due to their unique physical characteristics. CNTs have a low heat capacity, low intrinsic capacitance, and incredibly fast thermal time constants. They can also exhibit ballistic transport at low bias, for both phonons and electrons, as evident by their fairly long mean free paths. However, despite the great potential they present, the RF behavior of these nanostructures is not completely understood. In order to explore this high frequency regime we studied the microwave (MW) and terahertz (THz) response of individual and bundled single wall nanotube based devices. This thesis is …