Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 7 of 7

Full-Text Articles in Electronic Devices and Semiconductor Manufacturing

Method Of Evanescently Coupling Whispering Gallery Mode Optical Resonators Using Liquids, Hengky Chandrahalim, Kyle T. Bodily May 2023

Method Of Evanescently Coupling Whispering Gallery Mode Optical Resonators Using Liquids, Hengky Chandrahalim, Kyle T. Bodily

AFIT Patents

The present invention relates to evanescently coupling whispering gallery mode optical resonators having a liquid coupling as well as methods of making and using same. The aforementioned evanescently coupling whispering gallery mode optical resonators having a liquid couplings provide increased tunability and sensing selectivity over current same. The aforementioned. Applicants’ method of making evanescent-wave coupled optical resonators can be achieved while having coupling gap dimensions that can be fabricated using standard photolithography. Thus economic, rapid, and mass production of coupled WGM resonators-based lasers, sensors, and signal processors for a broad range of applications can be realized.


Noncontact Liquid Crystalline Broadband Optoacoustic Sensors, Hengky Chandrahalim, Michael T. Dela Cruz Jun 2022

Noncontact Liquid Crystalline Broadband Optoacoustic Sensors, Hengky Chandrahalim, Michael T. Dela Cruz

AFIT Patents

An optoacoustic sensor includes a liquid crystal (LC) cell formed between top and bottom plates of transparent material. A transverse grating formed across the LC cell that forms an optical transmission bandgap. A CL is aligned to form a spring-like, tunable Bragg grating that is naturally responsive to external agitations providing a spectral transition regime, or edge, in the optical transmission bandgap of the transverse grating that respond to broadband acoustic waves. The optoacoustic sensor includes a narrowband light source that is oriented to transmit light through the top plate, the LC cell, and the bottom plate. The optoacoustic sensor …


Hinged Temperature-Immune Self-Referencing Fabry–Pérot Cavity Sensors, Jeremiah C. Williams, Hengky Chandrahalim May 2022

Hinged Temperature-Immune Self-Referencing Fabry–Pérot Cavity Sensors, Jeremiah C. Williams, Hengky Chandrahalim

AFIT Patents

A passive microscopic Fabry-Pérot Interferometer (FPI) sensor includes a three-dimensional microscopic optical structure formed on a cleaved tip of the optical fighter using a two-photon polymerization process on a photosensitive polymer by a three-dimensional micromachining device. The three-dimensional microscopic optical structure having a hinged optical layer pivotally connected to a distal portion of a suspended structure. A reflective layer is deposited on a mirror surface of the hinged optical layer while in an open position. The hinged optical layer is subsequently positioned in the closed position to align the mirror surface to at least partially reflect a light signal back …


Digitally Programmable Rf Mems Filters With Mechanically Coupled Resonators, Hengky Chandrahalim, Sunil Ashok Bhave Mar 2013

Digitally Programmable Rf Mems Filters With Mechanically Coupled Resonators, Hengky Chandrahalim, Sunil Ashok Bhave

AFIT Patents

A digitally-tunable RF MEMS filter includes a substrate and a plurality of mechanically coupled resonators, wherein a first and a last resonator of the plurality of mechanically coupled resonators are configured to be electrostatically transduced. One or more of the plurality of mechanically coupled resonators are configured to be biased relative to the substrate such that the one or more biased resonators may be brought substantially in contact with the substrate. In a method of digitally tuning an RF MEMS filter having a mechanically coupled resonator array, a DC bias voltage is applied to at least a first resonator and …


Electromagnetic Modeling And Measurement Of Adaptive Metamaterial Structural Elements, Matthew E. Jussaume Mar 2011

Electromagnetic Modeling And Measurement Of Adaptive Metamaterial Structural Elements, Matthew E. Jussaume

Theses and Dissertations

This document addresses two major obstacles facing metamaterial development: uncertainty in the characterization of electromagnetic field behavior in metamaterial structures and the relatively small operational bandwidth of metamaterial structures. To address the first obstacle, a method of prediction aided measurement is developed and exploited to examine the field interactions within metamaterial devices. The fusion of simulation and measurement techniques enhances the understanding of the physical interactions of fields in the presence of metamaterials. To address the second obstacle, this document characterizes the effectiveness of an adaptive metamaterial design that incorporates a microelectromechanical systems (MEMS) variable capacitor. Applying voltages to the …


A Mems Multi-Cantilever Variable Capacitor On Metamaterial, Luke A. Rederus Feb 2009

A Mems Multi-Cantilever Variable Capacitor On Metamaterial, Luke A. Rederus

Theses and Dissertations

Negative refractive index materials are an example of metamaterials that are becoming increasingly popular. Research into these metamaterials could possibly be the first steps toward bending electromagnetic radiation (i.e., microwaves, light, etc.) around an object or person. Split ring resonators (SRR) are classified as metamaterials that create an artificial magnetic response from materials with no inherent magnetic properties. Once fabricated, an SRR has a specific resonant frequency due to its permanent geometry. This research introduces a new concept of using a variable capacitive micro- electro-mechanical system (MEMS) device located at the gap of an SRR to mechanically alter the capacitance …


Performance Comparison Of Pb(Zr0.52Ti0.48)O3-Only And Pb(Zr0.52Ti0.48)O3-On-Silicon Resonators, Hengky Chandrahalim, Sunil A. Bhave, Ronald G. Polcawich, Jeff Pulskamp, Dan Judy, Roger Kaul, Madan Dubey Jan 2008

Performance Comparison Of Pb(Zr0.52Ti0.48)O3-Only And Pb(Zr0.52Ti0.48)O3-On-Silicon Resonators, Hengky Chandrahalim, Sunil A. Bhave, Ronald G. Polcawich, Jeff Pulskamp, Dan Judy, Roger Kaul, Madan Dubey

Faculty Publications

This paper provides a quantitative comparison and explores the design space of lead zirconium titanate (PZT)–only and PZT-on-silicon length-extensional mode resonators for incorporation into radio frequency microelectromechanical system filters and oscillators. We experimentally measured the correlation of motional impedance (RX) and quality factor (Q) with the resonators’ silicon layer thickness (tSi). For identical lateral dimensions and PZT-layer thicknesses (tPZT), the PZT-on-silicon resonator has higher resonant frequency (fC), higher Q (5100 versus 140), lower RX (51 Ω versus 205 Ω), and better linearity [third-order input intercept …