Open Access. Powered by Scholars. Published by Universities.®

Electrical and Electronics Commons

Open Access. Powered by Scholars. Published by Universities.®

Battery

Discipline
Institution
Publication Year
Publication
Publication Type

Articles 1 - 21 of 21

Full-Text Articles in Electrical and Electronics

Potential Of Grid-Scale Pv And Storage Facilities To Participate In Capacity Markets, Nicholas Giovannetti May 2022

Potential Of Grid-Scale Pv And Storage Facilities To Participate In Capacity Markets, Nicholas Giovannetti

Theses and Dissertations

The recent FERC Order 841 has provided an opportunity for grid-scale PV and battery facilities to participate in the capacity market providing ancillary services. Order 841 combined with steadily decreasing PVand battery costs and increasing demand for renewable energy, gives high potential for a PV and battery facility to be economically viable. In this study, an analysis tool is developed as an auxiliary to the PV + Storage + Control + Grid (PSCG) simulation to estimate the megawatts (MW) of dispatchable capacity that can be reliably offered by a PV and storage facility. Limits are based on grid connection, power …


Model Predictive Control For Grid Scale Pv And Battery, Sahithi Chatradi May 2022

Model Predictive Control For Grid Scale Pv And Battery, Sahithi Chatradi

Theses and Dissertations

Model Predictive Control (MPC) is a control technique that uses prediction data to optimize costs over a given predictive horizon. There are many papers that use this technique to optimize cost in a substantially loaded microgrid, but these techniques are not feasible for utility-scale PV+Storage facility. In this study, MPC is used to optimize the cost for a utility-scale PV+Storage facility, by adding a factor of a possible curtailment. The thesis also presents the various factors that the MPC has in that utility size grid. These factors include line losses, net yield, and curtailment.


Parameter Estimation And Charge Control In Standalone And Grid-Tied Batteries, Asadullah Khalid Feb 2022

Parameter Estimation And Charge Control In Standalone And Grid-Tied Batteries, Asadullah Khalid

FIU Electronic Theses and Dissertations

Energy storage systems are the critical components enabling an electrified future ranging from electric vehicles (EVs) to microgrid (MG) applications. With the advancements in these applications, the operational dynamics of electrochemical energy storage such as Lithium-ion batteries need to be analyzed from the lifecycle impact, cybersecurity, balancing requirements, and prognostics perspectives. These operations enable the interconnected systems to be secure, efficient, and self-adaptive while reducing greenhouse emissions.

This research aims to develop threefold solutions. The first objective of this dissertation is to analyze lifecycle impact, quantify the interconnection requirements of battery energy storage systems, and evaluate cybersecurity frameworks for battery …


Dc-To-Dc Buck Converter, Kyle Christopher Roman Dec 2017

Dc-To-Dc Buck Converter, Kyle Christopher Roman

Electrical Engineering

The growth of sustainable energy requires many components to work in harmony creating one efficient and effective system. Sustainable energy generation that produces a DC current varying in voltage requires a subsystem to convert voltage to a practical and usable value. The DC to DC Buck converter converts high DC solar generated voltage to a 12V output. This Modular -Level power electronic (MLPE) device performs as a solar charge controller for small lithium ion batteries. Fluctuating voltage levels generated by Photovoltaic cells makes the solar controller a critical part of the solar system. Regulating the DC voltage allows safe and …


Battery Energy Storage Emulation For Power System Applications, Jessica Danielle Boles Aug 2017

Battery Energy Storage Emulation For Power System Applications, Jessica Danielle Boles

Masters Theses

The concept of energy storage for power systems has received increasingly more attention in recent decades, and the growing penetration of renewable energy sources has only escalated demand for it. Energy storage systems are excellent for balancing generation and load, for suppressing power fluctuations, and for providing other ancillary services to the grid. The Hardware Testbed (HTB) is a novel converter-based grid emulator created for studying the needs associated with high renewable penetration, but the system currently lacks a battery storage emulator. Thus, this work documents the development of a battery energy storage system (BESS) emulator for the HTB.

The …


Solar Roller - Solar Powered Usb Charging Station, Aaron Bartfeld, Tanner Mjelde, Kaylan Naicker Jun 2017

Solar Roller - Solar Powered Usb Charging Station, Aaron Bartfeld, Tanner Mjelde, Kaylan Naicker

Electrical Engineering

As the necessity for renewable energy increases, solar power becomes more and more prevalent. At the same time, as technology increases, the necessity for charging one’s electronic devices also increases. The Solar Roller merges solar energy with the ability to charge one's electronic device in one compact cart. The Solar Roller is a solar-powered USB charging station that allows people of all backgrounds to develop a better understanding of alternative fuels, while charging their USB device. It has a touch screen display that provides voltage levels of the battery as well as a TV that displays solar powered information. The …


Optimising The Performance Of Cement-Based Batteries, Aimee Byrne, Shane Barry, Niall Holmes Dr., Brian Norton Jan 2017

Optimising The Performance Of Cement-Based Batteries, Aimee Byrne, Shane Barry, Niall Holmes Dr., Brian Norton

Articles

The development of a battery using different cement-based electrolytes to provide a low but potentially sustainable source of electricity is described. The current, voltage, and lifespan of batteries produced using different electrolyte additives, copper plate cathodes, and (usually) aluminium plate anodes were compared to identify the optimum design, components, and proportions to increase power output and longevity. Parameters examined include water/cement ratio, anode to cathode surface area ratio, electrode material, electrode spacing, and the effect of sand, aggregate, salts, carbon black, silica fume, and sodium silicate on the electrolyte. The results indicate that the greatest and longest lasting power can …


A New Paradigm Of Maximizing The Wind And Solar Penetration– A Economical Assessment, Yuming Chen May 2016

A New Paradigm Of Maximizing The Wind And Solar Penetration– A Economical Assessment, Yuming Chen

Theses and Dissertations

Wind and solar energies are the most potential and widely-used renewable energies. But in most cases these energies cannot be maximized because of transmission line capacity and their remote location. Therefore, this thesis proposes a new paradigm which using battery transportation and logistics instead of transmission line, to maximize wind and solar energies. The main focus of this work is to investigate the economical feasibilities of this new paradigm.

In the first part, different models and application are presented. The purpose is finding an appropriate model which can make full use of existing grid resources such as transmission line and …


Hybrid Energy Storage Implementation In Dc And Ac Power System For Efficiency, Power Quality And Reliability Improvements, Mustafa Farhadi Mar 2016

Hybrid Energy Storage Implementation In Dc And Ac Power System For Efficiency, Power Quality And Reliability Improvements, Mustafa Farhadi

FIU Electronic Theses and Dissertations

Battery storage devices have been widely utilized for different applications. However, for high power applications, battery storage systems come with several challenges, such as the thermal issue, low power density, low life span and high cost. Compared with batteries, supercapacitors have a lower energy density but their power density is very high, and they offer higher cyclic life and efficiency even during fast charge and discharge processes. In this dissertation, new techniques for the control and energy management of the hybrid battery-supercapacitor storage system are developed to improve the performance of the system in terms of efficiency, power quality and …


An Economical Model Development For A Hybrid System Of Grid Connected Solar Pv And Electrical Storage System, Mohammad Hasan Balali Dec 2015

An Economical Model Development For A Hybrid System Of Grid Connected Solar Pv And Electrical Storage System, Mohammad Hasan Balali

Theses and Dissertations

Energy sources management is one of the most important concern in the recent decades. There are finite amount of non-renewable energy sources and one day they will run out if they have been used as primary sources of energy. Renewable energy sources have been significantly reduced the environmental effects. For most of them the source of energy is non-depletable.

One of the concerns associated with renewable resources is uncertainty or unavailability. Energy Storage Systems (ESSs) can help to have more reliable and more efficient systems by adjusting the charge and discharge time and rate. In this study, an economic model …


Universal Programmable Battery Charger With Optional Battery Management System, Michael Duke Desando Jun 2015

Universal Programmable Battery Charger With Optional Battery Management System, Michael Duke Desando

Master's Theses

This report demonstrates improvements made in battery charging and battery management technology through the design of a universal programmable battery charger with optional battery management system attachment. This charger offers improvements in charge efficiency and unique battery charging algorithms to charge a variety of battery chemistries with variety of power requirements. Improvements in efficiency result from a synchronous Buck Controller topology as compared to previous universal chargers that use asynchronous Buck-Boost Converter topologies. This battery charger also surpasses current universal battery chargers by offering different charge modes for different battery chemistries. Charge modes provide the user an option between extending …


Energy Neutral Operation Method For Hybrid Energy Storage Integrated With Wind Farm Using C-Rate And Frequency Spectrum Analysis, Young Jun Seo May 2015

Energy Neutral Operation Method For Hybrid Energy Storage Integrated With Wind Farm Using C-Rate And Frequency Spectrum Analysis, Young Jun Seo

Theses and Dissertations

In this thesis, the author describes various evaluation criteria, in particular the C-rate (charge/discharge-rate), of energy storage (ES) systems to explain the efficiency and technical benefits of battery-ultracapacitor hybrid energy storage (HES), and the technical characteristics of subsequently derived short-duration and long-duration type ES. In addition, for effective use of energy storage, a straightforward state of charge (SOC) correction method for energy neutral operation is proposed, and through a simple comparative example of ES operation, the effectiveness of HES in relation to simple ES is explained. A case is considered in which a hybrid ES controls the wind power ramp …


Battery Management System, Michael Desando, Kyle Woody Jun 2014

Battery Management System, Michael Desando, Kyle Woody

Electrical Engineering

Problem Statement:

There have been recent reports of multi-million dollar companies having to recall entire projects due to their BMS’s malfunctioning or operating incorrectly. The purpose of this project is to analyze the future of batteries, the Lithium-Ion cell, and to exercise a BMS to better understand its capabilities and possible cases for errors. Lithium ion batteries are intolerant of overcharge and overdischarge. Abuse of this kind can result in high temperatures, venting of gases, fire, or explosion. Therefore battery management systems have been devised to prevent such abuse. Recent events such as fires on the Boeing Dreamliner and the …


Multi-Physics Model Of Key Components In High Efficiency Vehicle Drive, Shao Hua Lin Jan 2013

Multi-Physics Model Of Key Components In High Efficiency Vehicle Drive, Shao Hua Lin

Electronic Theses and Dissertations

Hybrid Electric Vehicles (HEVs) and Electric Vehicles (EVs) are crucial technologies for the automotive industry to meet society’s demands for cleaner, more energy efficient transportation. Meeting the need to provide power which sustains HEVs and EVs is an immediate area of concern that research and development within the automotive community must address. Electric batteries and electrical motors are the key components in HEV and EV power generation and transmission, and their performance plays very important role in the overall performance of the modern high efficiency vehicles. Therefore, in this dissertation, we are motivated to study the electric batteries, interior permanent …


Graphene-Coated Substrates For Biochemical And Optoelectronic Applications, Amrita Banerjee Aug 2012

Graphene-Coated Substrates For Biochemical And Optoelectronic Applications, Amrita Banerjee

Dissertations

Graphene - monolayer or a few layers of graphite -- has proven to possess remarkable properties: large thermal conductivity, mechanical robustness, two-dimensional ultra large electronic mobility, chemical inertness and biochemical compatibility. Realization of some applications has been impeded by lack of a large area deposition method. By using a novel methodology to deposit graphene on solid and perforated substrates, various optoelectronic and biochemical elements have been demonstrated in this thesis: (1) graphene based transistors were fabricated and their characteristics were assessed. The mobility for such transistors exceeded 5000 cm2/V·s, much larger than their silicon based counterparts. Such attribute opens up …


Rapid Battery Interchange System, Mason Borda Mar 2012

Rapid Battery Interchange System, Mason Borda

Electrical Engineering

As our nation strives towards a departure from widespread use of fossil fuels, we must focus on a plan for what is to be the substitute for Internal Combustion Engine vehicles as well as the infrastructure to support this. The most popular alternative to the internal combustion engine is the electrically propelled vehicle, one that can provide us with many benefits including simplified construction, lower operational costs, and for the driving enthusiasts more torque. The prevailing issue in the widespread acceptance and use of the electric vehicle thus far is “range anxiety”. Range anxiety is defined as “The fear of …


Solar Powered Backpack, Saagar Sabharwal, Tom Poonsopin Jun 2011

Solar Powered Backpack, Saagar Sabharwal, Tom Poonsopin

Electrical Engineering

One popular motto in electrical engineering today is “going green.” This project will convert the sun’s energy into reusable energy. The purpose of this senior project is to develop a solar powered backpack that can charge certain portable USB devices for students. Many students walk around campus with an iPod or cell phone, which has surely died or ran low on batteries at least once when needed most. This backpack will allow students to charge their devices “on the go.” When students walk or bike around campus, the solar panels attached to the backpack will allow recharging of their portable …


Electric Motor & Power Source Selection For Small Aircraft Propulsion, Jeremy Fehrenbacher, David L. Stanley, Mary E. Johnson Dr., Jeffrey Honchell Apr 2011

Electric Motor & Power Source Selection For Small Aircraft Propulsion, Jeremy Fehrenbacher, David L. Stanley, Mary E. Johnson Dr., Jeffrey Honchell

Purdue Polytechnic Directed Projects

The research conducted in this project is on electrical propulsion in aviation. A Cessna 172K aircraft with a Lycoming O-320-E2D piston engine serves as a baseline measurement. Investigation of the components required for electrical flight is performed, and components are selected based on market availability and operational performance criteria.

This research focuses on electrical propulsion in the aviation industry, and is tailored to aircraft within the General Aviation sector leading to the following research question: Can current electric motor and battery technologies conceptually support flight operations for a Cessna 172K in terms of aircraft performance criteria?

The results explore the …


Energy Storage And Management For A Small Series Plug-In Hybrid Electric Vehicle, Liqin Ni Nov 2010

Energy Storage And Management For A Small Series Plug-In Hybrid Electric Vehicle, Liqin Ni

Department of Electrical and Computer Engineering: Dissertations, Theses, and Student Research

Plug-in hybrid electric vehicles (PHEVs) are gaining increasing interest for both residential and commercial transportation applications. In PHEV design, energy storage system (EES) is a critical component which will impact the overall design efficiency, performance, cost and etc. This dissertation aims to design an advanced energy storage system for a small plug-in hybrid electric vehicle, whose performance will approach very closely to the optimal possible, in terms of energy efficiency and acceleration, for passenger road vehicles application. Moreover, practical automotive requirements are considered during ESS design, such as cost, life time, safety and volume.

This dissertation utilizes ultracapacitors in conjunction …


The Applications And Limitations Of Printable Batteries, Matthew Delmanowski Jun 2010

The Applications And Limitations Of Printable Batteries, Matthew Delmanowski

Graphic Communication

This study focuses on the potential applications for printed batteries and how they could affect the printing industry. It also analyzes the main problems associated with manufacturing this technology and what needs to be done to overcome these issues. To find the answers to these questions, two methods of research were used. The first was through the elite and specialized interviewing of Dr. Scott Williams of Rochester Institute of Technology and Professor Nancy Cullins from Cal Poly. The second form of research was a common, yet useful, method called secondary research. This entailed looking at recent written research papers about …


Design And Development Of Rapid Battery Exchange Systems For Electric Vehicles To Be Used As Efficient Student Transportation, Jonathan A. Bevier Jul 2009

Design And Development Of Rapid Battery Exchange Systems For Electric Vehicles To Be Used As Efficient Student Transportation, Jonathan A. Bevier

Master's Theses

Rapid battery exchange systems were built for an electric van and pedal assist electric bike as a method of eliminating the need to recharge the vehicles batteries in order to increase the feasibility of using electric propulsion as a method of efficient student transportation. After selecting proper materials it was found that the systems would need a protective coating to ensure consistent operation. 1020 cold rolled steel samples coated with multiple thicknesses of vinyl resin paint, epoxy resin paint, and powder coating were subjected to environmental wear tests in order to determine if the type and thickness of common protective …