Open Access. Powered by Scholars. Published by Universities.®

Electrical and Electronics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 6 of 6

Full-Text Articles in Electrical and Electronics

Low-Power Analog Processing, Daniel J. White Nov 2014

Low-Power Analog Processing, Daniel J. White

Department of Electrical and Computer Engineering: Dissertations, Theses, and Student Research

This dissertation presents the analog harmonic transform (AHT) and a first implementation in an integrated circuit. The transform is designed for a regular and simple hardware structure. It provides coefficients relating to an input signal's spectrum. These coefficients also have a simple relationship to the signal's Fouri\'er series coefficients.

The AHT is defined in its ideal form and evaluated for two example signal classification applications. Both military vehicle and bearing fault classification tasks are presented which validate the ability of a neural network to use the AHT coefficients to correctly classify the input signals. Because any real use of the …


A Low-Power Compact Nuclear Quadrupole Resonance (Nqr) Based Explosive Detection System, Xinwang Zhang Nov 2014

A Low-Power Compact Nuclear Quadrupole Resonance (Nqr) Based Explosive Detection System, Xinwang Zhang

Department of Electrical and Computer Engineering: Dissertations, Theses, and Student Research

Abandoned landmines and terrorist bomb attacks are severe issues threatening our society. These issues necessitate the development of prompt and accurate explosive detection systems. The detection mechanisms commonly-used nowadays usually search for explosive containers, which suffer numerous false alarms caused by external detection circumstance changes. Alternatively, explosive substances inside the bombs and landmines can be detected by means of biology, chemistry and physics techniques. Nuclear Quadrupole Resonance (NQR) detection technology has proven to be a highly effective solution for detecting explosives unambiguously.

In this work, a portable NQR-based explosive detection system that employs state-of-the-art semiconductor technologies is presented. This system …


Uv Laser-Assisted Diamond Deposition, Mengxiao Wang Nov 2014

Uv Laser-Assisted Diamond Deposition, Mengxiao Wang

Department of Electrical and Computer Engineering: Dissertations, Theses, and Student Research

Diamond, due to its unique properties, has been studied for decades. Many diamond synthesis methods have been developed as well. As one of the synthesis methods, combustion flame chemical vapor deposition (CVD) is considered as the most flexible way. Combined with laser irradiation, laser-assisted combustion flame CVD can enhance the deposition process of diamond films. In this thesis work, efforts were made to explore the capability of a laser-assisted combustion flame CVD technique with krypton fluoride (KrF) excimer laser irradiation for improving diamond thin film quality and deposition rate. The research efforts mainly focus on following activities, including: 1) studying …


Theoretical Modeling Of Laser-Induced Absorption Phenomena In Optical Materials, Chris Ferris May 2014

Theoretical Modeling Of Laser-Induced Absorption Phenomena In Optical Materials, Chris Ferris

Department of Electrical and Computer Engineering: Dissertations, Theses, and Student Research

For over five decades, laser-induced damage and breakdown in optical materials has been an active field of research. As laser systems continually advance, new opportunities to study laser/material interactions arise. This thesis begins by presenting the damage mechanisms and absorption phenomena that lead to laser-induced breakdown. An in depth understanding of these processes led to the development of rate equations that describe electron density growth in a material exposed to a strong electromagnetic wave. These rate equations laid the foundation for the construction of a theoretical model. By using variable laser and material parameter inputs, the model calculates the laser-induced …


Security Analysis Of Phasor Measurement Units In Smart Grid Communication Infrastructures May 2014

Security Analysis Of Phasor Measurement Units In Smart Grid Communication Infrastructures

Department of Computer Electronics and Engineering: Dissertations, Theses, and Student Research

Phasor Measurement Units (PMUs), or synchrophasors, are rapidly being deployed in the smart grid with the goal of measuring phasor quantities concurrently from wide area distribution substations. By utilizing GPS receivers, PMUs can take a wide area snapshot of power systems. Thus, the possibility of blackouts in the smart grid, the next generation power grid, will be reduced. As the main enabler of Wide Area Measurement Systems (WAMS), PMUs transmit measured values to Phasor Data Concentrators (PDCs) by the synchrophasor standard IEEE C37.118. IEC 61850 and IEC 62351 are the communication protocols for the substation automation system and the security …


Position/Speed Sensorless Control For Permanent-Magnet Synchronous Machines, Yue Zhao Apr 2014

Position/Speed Sensorless Control For Permanent-Magnet Synchronous Machines, Yue Zhao

Department of Electrical and Computer Engineering: Dissertations, Theses, and Student Research

Permanent-magnet synchronous machines (PMSMs) are widely used in industrial applications owing to their distinctive advantages, such as high efficiency, high power density, and wide constant power region. To achieve high-performance field oriented control, accurate rotor position information, which is usually measured by rotary encoders or resolvers, is indispensable. However, the use of these sensors increases the cost, size, weight, and wiring complexity and reduces the mechanical robustness and the reliability of the overall PMSM drive systems. The goal of the research for this dissertation was to develop a rotor position/speed sensorless control system with performance comparable to the sensor-based control …