Open Access. Powered by Scholars. Published by Universities.®

Electrical and Electronics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 23 of 23

Full-Text Articles in Electrical and Electronics

Split-Step Approach To Electromagnetic Propagation Through Atmospheric Turbulence Using The Modified Von Karman Spectrum And Planar Apertures, Monish Ranjan Chatterjee, Fathi H.A. Mohamed Dec 2014

Split-Step Approach To Electromagnetic Propagation Through Atmospheric Turbulence Using The Modified Von Karman Spectrum And Planar Apertures, Monish Ranjan Chatterjee, Fathi H.A. Mohamed

Electrical and Computer Engineering Faculty Publications

The impact of atmospheric phase turbulence on Gaussian beam propagation along propagation paths of varying lengths is examined using multiple random phase screens. The work is motivated by research involving generation and encryption of acousto-optic chaos, and the interest in examining propagation of such chaotic waves through atmospheric turbulence. A phase screen technique is used to simulate perturbations to the refractive index of the medium through the propagation path. A power spectral density based on the modified von Karman spectrum model for turbulence is used to describe the random phase behavior of the medium.

In recent work, results for the …


Improved Performance Of Analog And Digital Acousto-Optic Modulation With Feedback Under Profiled Beam Propagation For Secure Communication Using Chaos, Fares S. Almehmadi, Monish Ranjan Chatterjee Dec 2014

Improved Performance Of Analog And Digital Acousto-Optic Modulation With Feedback Under Profiled Beam Propagation For Secure Communication Using Chaos, Fares S. Almehmadi, Monish Ranjan Chatterjee

Electrical and Computer Engineering Faculty Publications

Using intensity feedback, the closed-loop behavior of an acousto-optic hybrid device under profiled beam propagation has been recently shown to exhibit wider chaotic bands potentially leading to an increase in both the dynamic range and sensitivity to key parameters that characterize the encryption. In this work, a detailed examination is carried out vis-à-vis the robustness of the encryption/decryption process relative to parameter mismatch for both analog and pulse code modulation signals, and bit error rate (BER) curves are used to examine the impact of additive white noise.

The simulations with profiled input beams are shown to produce a stronger encryption …


Microprocessor Management Of Energy Harvesting Buck Boost Converters, Timothy O'Sullivan Dec 2014

Microprocessor Management Of Energy Harvesting Buck Boost Converters, Timothy O'Sullivan

Electrical Engineering

No abstract provided.


Wildlife Deterrence Method Test Device, Garrett Tietz, Adam Webb, Dane Knutson Dec 2014

Wildlife Deterrence Method Test Device, Garrett Tietz, Adam Webb, Dane Knutson

Mechanical Engineering

The objective of the Deer Busters team is to design and build a device or system of devices that will be used to determine which method, or methods, are most effective at deer deterrence. JumpSport suspects that a method which gives the appearance of approach to the deer in an aggressive or startling manner but also changes the way it attacks so that the deer do not get used to the device will be most effective. Deer Busters is committed to the completion of the deer deterrent testing device by the end of the fall quarter of 2014.


Development Of Hardware In The Loop Real-Time Control Techniques For Hybrid Power Systems Involving Distributed Demands And Sustainable Energy Sources, Ali Mazloomzadeh Nov 2014

Development Of Hardware In The Loop Real-Time Control Techniques For Hybrid Power Systems Involving Distributed Demands And Sustainable Energy Sources, Ali Mazloomzadeh

FIU Electronic Theses and Dissertations

The future power grid will effectively utilize renewable energy resources and distributed generation to respond to energy demand while incorporating information technology and communication infrastructure for their optimum operation. This dissertation contributes to the development of real-time techniques, for wide-area monitoring and secure real-time control and operation of hybrid power systems.

To handle the increased level of real-time data exchange, this dissertation develops a supervisory control and data acquisition (SCADA) system that is equipped with a state estimation scheme from the real-time data. This system is verified on a specially developed laboratory-based test bed facility, as a hardware and software …


Beam Steering Control System For Low-Cost Phased Array Weather Radars: Design And Calibration Techniques, Rafael H. Medina-Sanchez Aug 2014

Beam Steering Control System For Low-Cost Phased Array Weather Radars: Design And Calibration Techniques, Rafael H. Medina-Sanchez

Doctoral Dissertations

Phase array antennas are a promising technology for weather surveillance radars. Their fast beam steering capability offer the potential of improving weather observations and extending warning lead times. However, one major problem associated with this technology is their high acquisition cost to be use in networked radar systems. One promising technology that could have a significant impact in the deployment of future dense networks of short-range X-band weather radars is the ``Phase-Tilt Radar'', a system that uses a one-dimensional phase scanned antenna array mounted over a tilting mechanism. This dissertation addresses some of specific challenges that arise in designing and …


Modeling Of Power Spectral Density Of Modified Von Karman Atmospheric Phase Turbulence And Acousto-Optic Chaos Using Scattered Intensity Profiles Over Discrete Time Intervals, Monish Ranjan Chatterjee, Fathi H.A. Mohamed Aug 2014

Modeling Of Power Spectral Density Of Modified Von Karman Atmospheric Phase Turbulence And Acousto-Optic Chaos Using Scattered Intensity Profiles Over Discrete Time Intervals, Monish Ranjan Chatterjee, Fathi H.A. Mohamed

Electrical and Computer Engineering Faculty Publications

In recent research, propagation of plane electromagnetic (EM) waves through a turbulent medium with modified von Karman phase characteristics was modeled and numerically simulated using transverse planar apertures representing narrow phase turbulence along the propagation path.

The case for extended turbulence was also studied by repeating the planar phase screens multiple times over the propagation path and incorporating diffractive effects via a split-step algorithm. The goal of the research reported here is to examine two random phenomena: (a) atmospheric turbulence due to von Karman-type phase fluctuations, and (b) chaos generated in an acousto-optic (A-O) Bragg cell under hybrid feedback. The …


Realization Of Negative Index In Second-Order Dispersive Metamaterials Using Standard Dispersion Models For Electromagnetic Parameters, Tarig A. Algadey, Monish Ranjan Chatterjee Aug 2014

Realization Of Negative Index In Second-Order Dispersive Metamaterials Using Standard Dispersion Models For Electromagnetic Parameters, Tarig A. Algadey, Monish Ranjan Chatterjee

Electrical and Computer Engineering Faculty Publications

In recent work, electromagnetic propagation velocities for plane waves in dispersive metamaterials were calculated assuming frequency dispersion up to the second order. The three velocities were expressed in terms of dispersive coefficients under certain simplifying constraints. Frequency domains were found to exist around resonances where group and phase velocities are in opposition, implying possible negative index behavior.

In this paper, we incorporate in the derived equations physical models (including Debye, Lorentz and Condon) for material dispersion in permittivity, permeability and chirality in order to further examine the consequences of second-order dispersion leading to negative index for practical cases, and also …


Numerical Investigation Of The Nonlinear Dynamics Of A Hybrid Acousto-Optic Bragg Cell With A Variable Feedback Gain, Monish Ranjan Chatterjee, Hao Zhou Aug 2014

Numerical Investigation Of The Nonlinear Dynamics Of A Hybrid Acousto-Optic Bragg Cell With A Variable Feedback Gain, Monish Ranjan Chatterjee, Hao Zhou

Electrical and Computer Engineering Faculty Publications

Since around 1979, the operation of an acousto-optic Bragg cell under positive first-order feedback via amplification and delay in the loop has been studied extensively by several groups [1-3]. In recent work, the analysis of the nonlinear dynamics (NLD) of the system was extended to include bistable maps and Lyapunov exponents, and application of the chaos for signal encryption and decryption for uniform plane waves. The present work originated with the problem of a variable photodetector aperture opening relative to the first-order light. This potentially complex problem is simplified by assuming instead a variable feedback gain ( β ~ (t)), …


Information Encryption, Transmission, And Retrieval Via Chaotic Modulation In A Hybrid Acousto-Optic Bragg Cell Under Profiled Beam Illumination, Monish Ranjan Chatterjee, Fares S. Almehmadi Aug 2014

Information Encryption, Transmission, And Retrieval Via Chaotic Modulation In A Hybrid Acousto-Optic Bragg Cell Under Profiled Beam Illumination, Monish Ranjan Chatterjee, Fares S. Almehmadi

Electrical and Computer Engineering Faculty Publications

In recent work, the propagation of a profiled optical beam through an open-loop acousto-optic Bragg cell was examined using a transfer function formalism. The device was also studied under closed-loop via intensity feedback, and shown to exhibit more extended chaotic band responses, thereby potentially increasing the dynamic range and parameter sensitivities of any applied signal and the device operation respectively.

In this paper, simple low- to mid-RF signals (periodic waveforms and low BW audio) are transmitted through the closed-loop system and the resulting encryption and recovery at the receiver are examined especially from the perspective of overall robustness of the …


Nonlocal And Quantum-Tunneling Contributions To Harmonic Generation In Nanostructures: Electron-Cloud-Screening Effects, Michael Scalora, Maria Antonietta Vincenti, Domenico De Ceglia, Joseph W. Haus Jul 2014

Nonlocal And Quantum-Tunneling Contributions To Harmonic Generation In Nanostructures: Electron-Cloud-Screening Effects, Michael Scalora, Maria Antonietta Vincenti, Domenico De Ceglia, Joseph W. Haus

Electrical and Computer Engineering Faculty Publications

Our theoretical examination of second- and third-harmonic generation from metal-based nanostructures predicts that nonlocal and quantum-tunneling phenomena can significantly exceed expectations based solely on local, classical electromagnetism. Mindful that the diameter of typical transition-metal atoms is approximately 3 Å, we adopt a theoretical model that treats nanometer-size features and/or subnanometer-size gaps or spacers by taking into account (i) the limits imposed by atomic size to fulfill the requirements of continuum electrodynamics, (ii) spillage of the nearly free electron cloud into the surrounding vacuum, and (iii) the increased probability of quantum tunneling as objects are placed in close proximity.

Our approach …


Ultraviolet Led Biofouling Mitigation, Andrew Lam Jun 2014

Ultraviolet Led Biofouling Mitigation, Andrew Lam

Computer Engineering

The goal is to determine if low-cost UV LEDs can mitigate marine biofouling on small glass or acrylic camera lenses. A microprocessor-controlled experimental setup to control the illumination of low-cost UV LEDs of various wavelength and packaging was fashioned. The system consists of a programmed microcontroller, a manufactured LED breakout interface, and a submergible UV LED array enclosed in a borosilicate glass tube. A preliminary qualitative assessment of four different UV LEDs was conducted during a three-week deployment of the experimental setup in the raw seawater system at the Cal Poly Center for Costal and Marine Sciences in Avila Beach, …


Mos Current Mode Logic (Mcml) Analysis For Quiet Digital Circuitry And Creation Of A Standard Cell Library For Reducing The Development Time Of Mixed Signal Chips, David Marusiak Jun 2014

Mos Current Mode Logic (Mcml) Analysis For Quiet Digital Circuitry And Creation Of A Standard Cell Library For Reducing The Development Time Of Mixed Signal Chips, David Marusiak

Master's Theses

Many modern digital systems use forms of CMOS logical implementation due to the straight forward design nature of CMOS logic and minimal device area since CMOS uses fewer transistors than other logic families. To achieve high-performance requirements in mixed-signal chip development and quiet, noiseless circuitry, this thesis provides an alternative toCMOSin the form of MOS Current Mode Logic (MCML). MCML dissipates constant current and does not produce noise during value changing in a circuit CMOS circuits do. CMOS logical networks switch during clock ticks and with every device switching, noise is created on the supply and ground to deal with …


Analog Violin Audio Synthesizer, Brandon E. Davis Jun 2014

Analog Violin Audio Synthesizer, Brandon E. Davis

Electrical Engineering

Abstract In the past decade, music electronics have almost completely shifted from analog to digital technology. Digital keyboards and effects provide more sound capabilities than their analog predecessors, while also reducing size and cost. However, many musicians still prefer analog instruments due to the perception that they produce superior sound quality. Many musicians spend extra money and accommodate the extra space required for analog technologies instead of digital.

Furthermore, audio synthesizers are commonly controlled with the standard piano keyboard interface. Many musicians can perform sufficiently on a keyboard, but requiring a specific skill set limits the size of the market …


Numerical Examination Of The Nonlinear Dynamics Of A Hybrid Acousto-Optic Bragg Cell With Positive Feedback Under Profiled Beam Propagation, Fares S. Almehmadi, Monish Ranjan Chatterjee Apr 2014

Numerical Examination Of The Nonlinear Dynamics Of A Hybrid Acousto-Optic Bragg Cell With Positive Feedback Under Profiled Beam Propagation, Fares S. Almehmadi, Monish Ranjan Chatterjee

Electrical and Computer Engineering Faculty Publications

In standard weak interaction theory, acousto-optic Bragg analysis typically assumes that the incident light and sound beams are uniform plane waves. Acousto-optic Bragg diffraction with nonuniform profiled input beams is numerically examined under open loop via a transfer function formalism. Unexpected deviations in the first-order diffracted beam from the standard theory are observed for high �� values. These deviations are significant because the corresponding closed-loop system is sensitive to input amplitudes and initial conditions, and the overall impact on the dynamical behavior has not been studied previously in standard analyses. To explore the effect of such nonuniform output profiles on …


Memristor-Based Neuron Circuit And Method For Applying Learning Algorithm In Spice, Christopher Yakopcic, R. Hasan, T.M. Taha, M. Mclean, D. Palmer Mar 2014

Memristor-Based Neuron Circuit And Method For Applying Learning Algorithm In Spice, Christopher Yakopcic, R. Hasan, T.M. Taha, M. Mclean, D. Palmer

Electrical and Computer Engineering Faculty Publications

The learning of nonlinearly separable functions in cascaded memristor crossbar circuits is described and the feasibility of using them to develop low-power neuromorphic processors is demonstrated. This is the first study evaluating the training of memristor crossbars through SPICE simulations. It is important to capture the alternate current paths and wire resistance inherent in these circuits. The simulations show that neural network learning algorithms are able to train in the presence of alternate current paths and wire resistances. The fact that the approach reduces the area by three times and power by two orders of magnitude compared with the existing …


Numerical Analysis Of First-Order Acousto-Optic Bragg Diffraction Of Profiled Optical Beams Using Open-Loop Transfer Functions, Monish Ranjan Chatterjee, Fares S. Almehmadi Mar 2014

Numerical Analysis Of First-Order Acousto-Optic Bragg Diffraction Of Profiled Optical Beams Using Open-Loop Transfer Functions, Monish Ranjan Chatterjee, Fares S. Almehmadi

Electrical and Computer Engineering Faculty Publications

In standard acousto-optic Bragg analysis, the incident light and sound beams are assumed to be uniform plane waves (with constant profiles) leading to the results based on standard weak interaction theory. As a follow-up to earlier work dealing with nonuniform incident optical beams, we revisit the problem of Bragg diffraction under nonuniform profiles, and include Gaussian, third-order Hermite–Gaussian, and zeroth-order Bessel profiles in our investigation, along with a few others. The first-order diffracted beam is examined (using a transfer function formalism based on angular spectra) under several parametric limits [such as the Klein–Cook parameter Q, the effective profile width, and …


Investigation Of Profiled Beam Propagation Through A Turbulent Layer And Temporal Statistics Of Diffracted Output For A Modified Von Karman Phase Screen, Monish Ranjan Chatterjee, Fathi H.A. Mohamed Feb 2014

Investigation Of Profiled Beam Propagation Through A Turbulent Layer And Temporal Statistics Of Diffracted Output For A Modified Von Karman Phase Screen, Monish Ranjan Chatterjee, Fathi H.A. Mohamed

Electrical and Computer Engineering Faculty Publications

Gaussian beam propagation through a turbulent layer has been studied using a split-step methodology. A modified von Karman spectrum (MVKS) model is used to describe the random behavior of the turbulent media. Accordingly, the beam is alternately propagated (i) through a thin Fresnel layer, and hence subjected to diffraction; and (ii) across a thin modified von Karman phase screen which is generated using the power spectral density (PSD) of the random phase obtained via the corresponding PSD of the medium refractive index for MVKS turbulence.

The random phase screen in the transverse plane is generated from the phase PSD by …


Second-Harmonic Double-Resonance Cones In Dispersive Hyperbolic Metamaterials, Domenico De Ceglia, Maria Antonietta Vincenti, Salvatore Campione, Filippo Capolino, Joseph W. Haus, Michael Scalora Feb 2014

Second-Harmonic Double-Resonance Cones In Dispersive Hyperbolic Metamaterials, Domenico De Ceglia, Maria Antonietta Vincenti, Salvatore Campione, Filippo Capolino, Joseph W. Haus, Michael Scalora

Electrical and Computer Engineering Faculty Publications

We study the formation of second-harmonic double-resonance cones in hyperbolic metamaterials. An electric dipole on the surface of the structure induces second-harmonic light to propagate into two distinct volume plasmon-polariton channels: a signal that propagates within its own peculiar resonance cone and a phase-locked signal that is trapped under the pump's resonance cone. Metamaterial dispersion and birefringence induce a large angular divergence between the two volume plasmon polaritons, making these structures suitable for subwavelength second- and higher-harmonic imaging microscopy.


Numerical Inversion And Assessment Of 2d Laplace Transforms Using The Brancik Algorithm And Its Use In 3d Holography, Monish Ranjan Chatterjee, Le Feng Feb 2014

Numerical Inversion And Assessment Of 2d Laplace Transforms Using The Brancik Algorithm And Its Use In 3d Holography, Monish Ranjan Chatterjee, Le Feng

Electrical and Computer Engineering Faculty Publications

An analytic examination of 3D holography under a 90° recording geometry was carried out earlier in which 2D spatial Laplace transforms were introduced in order to develop transfer functions for the scattered outputs under readout [1,2].

Thereby, the resulting reconstructed output was obtained in the 2D Laplace domain whence the spatial information would be found only by performing a 2D Laplace inversion. Laplace inversion in 2D was attempted by testing a prototype function for which the analytic result was known using two known inversion algorithms, viz., the Brancik and the Abate [2]. The results indicated notable differences in the 3D …


Translation Of 'Seasons Of Life: A Panoramic Selection Of Songs By Rabindranath Tagore', Monish Ranjan Chatterjee Jan 2014

Translation Of 'Seasons Of Life: A Panoramic Selection Of Songs By Rabindranath Tagore', Monish Ranjan Chatterjee

Electrical and Computer Engineering Faculty Publications

No abstract provided.


Machine-Human Cooperative Control Of Welding Process, Weijie Zhang Jan 2014

Machine-Human Cooperative Control Of Welding Process, Weijie Zhang

Theses and Dissertations--Electrical and Computer Engineering

An innovative auxiliary control system is developed to cooperate with an unskilled welder in a manual GTAW in order to obtain a consistent welding performance. In the proposed system, a novel mobile sensing system is developed to non-intrusively monitor a manual GTAW by measuring three-dimensional (3D) weld pool surface. Specifically, a miniature structured-light laser amounted on torch projects a dot matrix pattern on weld pool surface during the process; Reflected by the weld pool surface, the laser pattern is intercepted by and imaged on the helmet glass, and recorded by a compact camera on it. Deformed reflection pattern contains the …


Measurement And Modeling Of Humidity Sensors, Jingbo Tong Jan 2014

Measurement And Modeling Of Humidity Sensors, Jingbo Tong

Theses and Dissertations--Electrical and Computer Engineering

Humidity measurement has been increasingly important in many industries and process control applications. This thesis research focus mainly on humidity sensor calibration and characterization. The humidity sensor instrumentation is briefly described. The testing infrastructure was designed for sensor data acquisition, in order to compensate the humidity sensor’s temperature coefficient, temperature chambers using Peltier elements are used to achieve easy-controllable stable temperatures. The sensor characterization falls into a multivariate interpolation problem. Neuron networks is tried for non-linear data fitting, but in the circumstance of limited training data, an innovative algorithm was developed to utilize shape preserving polynomials in multiple planes in …