Open Access. Powered by Scholars. Published by Universities.®

Electrical and Computer Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

PDF

Discipline
Institution
Keyword
Publication Year
Publication
Publication Type

Articles 31 - 60 of 34035

Full-Text Articles in Electrical and Computer Engineering

Star-Based Reachability Analysis Of Binary Neural Networks On Continuous Input, Mykhailo Ivashchenko May 2024

Star-Based Reachability Analysis Of Binary Neural Networks On Continuous Input, Mykhailo Ivashchenko

Department of Computer Science and Engineering: Dissertations, Theses, and Student Research

Deep Neural Networks (DNNs) have become a popular instrument for solving various real-world problems. DNNs’ sophisticated structure allows them to learn complex representations and features. However, architecture specifics and floating-point number usage result in increased computational operations complexity. For this reason, a more lightweight type of neural networks is widely used when it comes to edge devices, such as microcomputers or microcontrollers – Binary Neural Networks (BNNs). Like other DNNs, BNNs are vulnerable to adversarial attacks; even a small perturbation to the input set may lead to an errant output. Unfortunately, only a few approaches have been proposed for verifying …


Development Of A Multi-Use Modular Microfluidic Platform Using 3d Printing, Carson Emeigh May 2024

Development Of A Multi-Use Modular Microfluidic Platform Using 3d Printing, Carson Emeigh

Department of Mechanical and Materials Engineering: Dissertations, Theses, and Student Research

Microfluidic lab-on-a-chip (LoC) technology has driven numerous innovations due to their ability to perform laboratory-scale experiments on a single chip using microchannels. Although LoC technology has been innovative, it still suffers from limitations related to its fabrication and design flexibility. Typical LoC fabrication, with photolithography, is time consuming, expensive, and inflexible. To overcome the limitations of LoC devices, modular microfluidic platforms have been developed where multiple microfluidic modules, each with a specific function or group of functions, can be combined on a single platform. Modular microfluidics have overcome some of the limitations of LoC devices, but currently, their fabrication is …


Techniques To Overcome Energy Storage Limitations In Electric Vehicles, Matthew J. Hansen May 2024

Techniques To Overcome Energy Storage Limitations In Electric Vehicles, Matthew J. Hansen

All Graduate Theses and Dissertations, Fall 2023 to Present

Electric vehicles are becoming increasingly popular, battery limitations (cost, size, and weight) complicate electric vehicle adoption. While important research on battery development is ongoing, this dissertation discusses two main approaches to overcome those limitations within the existing battery technology paradigm. Those thrusts are: improving battery health through an optimal charging strategy and minimizing necessary battery size through dynamic wireless power transfer. In this dissertation, relevant literature is discussed, with opportunities for further development considered. Within the two thrusts, three objectives sharpen the focus of the research presented here. First, a planning tool is defined for a battery electric bus fleet. …


Low Noise Amplifier For 5ghz Wi-Fi Applications On 22nm, Harshdeep Singh May 2024

Low Noise Amplifier For 5ghz Wi-Fi Applications On 22nm, Harshdeep Singh

Electrical Engineering Undergraduate Honors Theses

More devices than ever are being used to connect to the internet via Wi-Fi than ever before. This creates the demand for improving Wi-Fi standards and wireless transceivers. On of the most important stages of a Wi-Fi receiver is the low noise amplifier (LNA), this is because it is the very first stage after the antenna receives the signal. The LNA is responsible for boasting the incoming signal while adding a low amount of noise to boast the signal enough to make it receptible to the rest of the receiver system. This study sought to design an inductively degenerated common …


Effectiveness Of Cnn-Lstm Models Used For Apple Stock Forecasting, Ethan White May 2024

Effectiveness Of Cnn-Lstm Models Used For Apple Stock Forecasting, Ethan White

Electronic Theses, Projects, and Dissertations

This culminating experience project investigates the effectiveness of convolutional neural networks mixed with long short-term memory (CNN-LSTM) models, and an ensemble method, extreme gradient boosting (XGBoost), in predicting closing stock prices. This quantitative analysis utilizes recent AAPL stock data from the NASDAQ index. The chosen research questions (RQs) are: RQ1. What are the optimal hyperparameters for CNN-LSTM models in stock price forecasting? RQ2. What is the best architecture for CNN-LSTM models in this context? RQ3. How can ensemble techniques like XGBoost effectively enhance the predictions of CNN-LSTM models for stock price forecasting?

The research questions were answered through a thorough …


Design And Implementation Of An Accelerated Lifetime Testing Platform For Silicon Carbide Mosfets, Conner Deppe May 2024

Design And Implementation Of An Accelerated Lifetime Testing Platform For Silicon Carbide Mosfets, Conner Deppe

All Graduate Theses and Dissertations, Fall 2023 to Present

In the last several years, the United States has seen a significant increase in sales of electric vehicles. The increase of electric vehicles brings the need for increased availability of public charging stations. In the last two years, satisfaction levels for public chargers have fallen significantly due to unreliability, which is raising concerns for new potential electric vehicle owners. To mitigate the reliability concerns, chargers must be physically understood so they can be consistently monitored to assess their health status. To understand the electric vehicle charging reliability, electrical components must first be understood. In the cutting-edge charging technology, the relatively …


The Contribution Of Micrornas To Rybp Silencing In Glioblastoma Multiforme, Alex B. Lee May 2024

The Contribution Of Micrornas To Rybp Silencing In Glioblastoma Multiforme, Alex B. Lee

Graduate Theses

Glioblastoma multiforme (GBM) is a highly aggressive and invasive tumor of the central nervous system (CNS). Survival rates are abysmal, with only 7.2% of patients alive 5-years after diagnosis. Because of this, understanding epigenetic alterations that give GBM tumors their aggressive phenotypes is critical for the development of more targeted and effective therapies. These alterations frequently affect a group of proteins called the Polycomb group proteins, which play important oncogenic and tumor suppressive roles in cancer. One Polycomb protein, the RING1- and YY1-binding protein (RYBP), is downregulated in a majority of GBM patients, suggesting a strong tumor suppressive property. In …


Summonable Construction Delivery Robot, Kevin M. Lewis May 2024

Summonable Construction Delivery Robot, Kevin M. Lewis

Honors Capstones

In many different construction industries, there is a need for tools, parts, and other necessary items to be transported quickly and efficiently over various types of terrain. Human resources have often been used to address these needs, which can become very time and cost inefficient over long periods. The design proposal here is aimed at addressing this need by developing an autonomous outdoor mobile robot based on a quadrupedal robot design. This approach differs by incorporating a wheeled and quadrupedal hybrid actuation system that provides terrain negotiation and speed at the appropriate times. The team uses Robot Operating System (ROS) …


Power System Electromagnetic Transient Simulation Using A Semi-Analytical Approach, Min Xiong May 2024

Power System Electromagnetic Transient Simulation Using A Semi-Analytical Approach, Min Xiong

Doctoral Dissertations

This dissertation investigates efficient power system electromagnetic transient (EMT) simulations using a semi-analytical approach.

First, based on state-space equations of system EMT models, a semi-analytical solution (SAS) is acquired using the Differential Transformation Method (DTM). The DTM can efficiently derive the SAS of any linear or nonlinear system as a power series in time in a recursive manner using well-developed transformation rules. A high-order SAS allows a large time step to speed up the simulation while maintaining the same level of accuracy. Also, a variable time step approach is proposed to further improve its efficiency. Case studies on multiple systems …


Real-Time Degradation Abatement Framework For Energy Storage System In Automotive Application Using Data-Driven Approaches, Laxman Timilsina May 2024

Real-Time Degradation Abatement Framework For Energy Storage System In Automotive Application Using Data-Driven Approaches, Laxman Timilsina

All Dissertations

The increasing popularity of electric vehicles (EVs) is driven by their compatibility with sustainable energy goals. However, the decline in the performance of energy storage systems, such as batteries, due to their degradation puts EVs and hybrid electric vehicles (HEVs) at a disadvantage compared to traditional internal combustion engine (ICE) vehicles. The batteries used in these vehicles have limited life. The degradation of the battery is accelerated by the operating conditions of the vehicle, which further reduces its life and increases the reliability and economic concerns for the vehicle’s operation. The aging mechanism inside a battery cannot be eliminated but …


Design, Fabrication, And Characterization Of Advanced High-Power Single-Mode 9xxnm Semiconductor Lasers, Xiaolei Zhao May 2024

Design, Fabrication, And Characterization Of Advanced High-Power Single-Mode 9xxnm Semiconductor Lasers, Xiaolei Zhao

All Dissertations

This thesis presents the comprehensive design, fabrication, and demonstration of advanced high-power, high-efficiency single-mode semiconductor lasers operating at a wavelength of 9xxnm. We begin with the design of the laser epitaxial structure, serving as the cornerstone for achieving high-power high-efficiency lasers. Our methodology integrates a semi-analytical calculation model, which accounts for Longitudinal Spatial Hole Burning (LSHB) and Two-Photon Absorption (TPA) effects, facilitating a thorough exploration of how design parameters influence output power and conversion efficiency. This approach offers an effective and time-efficient epitaxial structure optimization strategy compared to conventional full 3D simulation models.

Subsequently, we demonstrate high-power, high-efficiency ridge waveguide …


Robust And Trustworthy Deep Learning: Attacks, Defenses And Designs, Bingyin Zhao May 2024

Robust And Trustworthy Deep Learning: Attacks, Defenses And Designs, Bingyin Zhao

All Dissertations

Deep neural networks (DNNs) have achieved unprecedented success in many fields. However, robustness and trustworthiness have become emerging concerns since DNNs are vulnerable to various attacks and susceptible to data distributional shifts. Attacks such as data poisoning and out-of-distribution scenarios such as natural corruption significantly undermine the performance and robustness of DNNs in model training and inference and impose uncertainty and insecurity on the deployment in real-world applications. Thus, it is crucial to investigate threats and challenges against deep neural networks, develop corresponding countermeasures, and dig into design tactics to secure their safety and reliability. The works investigated in this …


Bidding Strategy For A Wind Power Producer In Us Energy And Reserve Markets, Anne Stratman May 2024

Bidding Strategy For A Wind Power Producer In Us Energy And Reserve Markets, Anne Stratman

Department of Electrical and Computer Engineering: Dissertations, Theses, and Student Research

Wind power is one of the world's fastest-growing renewable energy resources and has expanded quickly within the US electric grid. Currently, wind power producers (WPPs) may sell energy products in US markets but are not allowed to sell reserve products, due to the uncertain and intermittent nature of wind power. However, as wind’s share of the power supply grows, it may eventually be necessary for WPPs to contribute to system-wide reserves. This paper proposes a stochastic optimization model to determine the optimal offer strategy for a WPP that participates in the day-ahead and real-time energy and spinning reserve markets. The …


Vr Circuit Simulation With Advanced Visualization For Enhancing Comprehension In Electrical Engineering, Elliott Wolbach May 2024

Vr Circuit Simulation With Advanced Visualization For Enhancing Comprehension In Electrical Engineering, Elliott Wolbach

Department of Electrical and Computer Engineering: Dissertations, Theses, and Student Research

As technology advances, the field of electrical and computer engineering continuously demands innovative tools and methodologies to facilitate effective learning and comprehension of fundamental concepts. Through a comprehensive literature review, it was discovered that there was a gap in the current research on using VR technology to effectively visualize and comprehend non-observable electrical characteristics of electronic circuits. This thesis explores the integration of Virtual Reality (VR) technology and real-time electronic circuit simulation with enhanced visualization of non-observable concepts such as voltage distribution and current flow within these circuits. The primary objective is to develop an immersive educational platform that makes …


Design And Optimization Of A Novel Monolithic Spring For High-Frequency Press-Pack Sic Fet Modules, Bogac Canbaz May 2024

Design And Optimization Of A Novel Monolithic Spring For High-Frequency Press-Pack Sic Fet Modules, Bogac Canbaz

Department of Electrical and Computer Engineering: Dissertations, Theses, and Student Research

Silicon Carbide (SiC) Field-Effect Transistor (FET) modules lead the way in power electronics, being superior in efficiency and robustness for high-frequency applications. The shift towards SiC from traditional silicon (Si)-based devices is driven by its superior thermal conductivity, higher electric field strength, and operational efficiency at elevated temperatures. These features are critical for the development of next-generation, grid-oriented power converters aimed at enhancing the reliability and sustainability of power systems. This research focuses on high-frequency press-pack (HFPP) SiC FET modules, addressing the primary challenge of miniaturizing SiC FET dies without compromising performance, through an innovative press-contact design essential for increased …


An Investigation Of Information Structures In Dna, Joel Mohrmann May 2024

An Investigation Of Information Structures In Dna, Joel Mohrmann

Department of Electrical and Computer Engineering: Dissertations, Theses, and Student Research

The information-containing nature of the DNA molecule has been long known and observed. One technique for quantifying the relationships existing within the information contained in DNA sequences is an entity from information theory known as the average mutual information (AMI) profile. This investigation sought to use principally the AMI profile along with a few other metrics to explore the structure of the information contained in DNA sequences.

Treating DNA sequences as an information source, several computational methods were employed to model their information structure. Maximum likelihood and maximum a posteriori estimators were used to predict missing bases in DNA sequences. …


Phasor-Domain Short-Circuit Analysis Of Power Transmission Systems In The Presence Of Inverter-Based Resources, Dol Kunwar May 2024

Phasor-Domain Short-Circuit Analysis Of Power Transmission Systems In The Presence Of Inverter-Based Resources, Dol Kunwar

All Theses

Although a power system is nonlinear during healthy operation because of constant power loads and controlled power injections from the sources, a conventional power system fed by synchronous generators is linear during fault, and can be represented by bus impedance matrix (Z-bus), which is useful in power system analyses such as short circuit (SC) analysis. However, With increasing penetration of inverter-based resources (IBRs) in the system, the assumption of linearity of the faulted network does not hold. This impacts the analyses relying on Z-bus and Thevenin’s equivalent impedance (TEI), such as certain protection schemes set using short circuit analysis. Therefore, …


Photovoltaics And Battery-Based End-To-End Direct Current Sustainable Power Networks- Concept, Design, And Control, Vishwas Powar May 2024

Photovoltaics And Battery-Based End-To-End Direct Current Sustainable Power Networks- Concept, Design, And Control, Vishwas Powar

All Dissertations

The consequences of climate change have emphasized the need for a power network that is centered around green, low-cost, and renewable sources of energy. Currently, photovoltaics (PV) and wind turbines are the only two technologies that can convert renewable energy from the sun and wind, respectively, into large-scale power for the electricity network. This dissertation aims to provide a novel solution to implement direct current-based architecture for PV generation coupled with lithium-ion battery storage in an efficient and sustainable manner. Such a power network can enable efficiency, reliability, low cost, and sustainability with minimum impact on the environment. The first …


Bcl2 Mediated Targeted Drug Delivery For The Treatment Of Kidney Fibrosis And Stomach Cancer, Humayra Afrin May 2024

Bcl2 Mediated Targeted Drug Delivery For The Treatment Of Kidney Fibrosis And Stomach Cancer, Humayra Afrin

Open Access Theses & Dissertations

Apoptosis, the programmed death of cells, is primarily regulated by a delicate balance between pro-apoptotic and anti-apoptotic signals. The Bcl-2 (B-cell lymphoma 2) family of proteins acts as anti-apoptotic agents, promoting cell survival. Dysregulation of these proteins is a common occurrence in conditions such as cancer and fibrosis, where overexpression of anti-apoptotic members can foster tumor cell survival and fibroblast activation. In this study, our aim was to explore the therapeutic potential of Bcl-2 inhibitors, both as a small molecule (specifically Navitoclax (Navi)), inhibitor and as Bcl-2 siRNA, for targeted treatment. Intravenous administration of Navi often leads to thrombocytopenia, necessitating …


Effect Of Patient Specific Blood Biomarkers On Nanoparticle - Cell Interactions, Veronica Gabriela Contreras May 2024

Effect Of Patient Specific Blood Biomarkers On Nanoparticle - Cell Interactions, Veronica Gabriela Contreras

Open Access Theses & Dissertations

Nanoparticles are currently known to be a promising material class for bio-applications in drug delivery and vaccine development. Using gold nanoparticles of varied sizes, in this case 45 and 100 nanometers as a model nanomaterial system, we investigated how patients' blood physiology and chemistry (such as solute, protein, lipid levels) affect the biological response to bionanomaterials. When nanoparticles are injected into the body, biomolecules in the blood adsorb to the nanoparticle's surface to form a biomolecular corona that is specific to the patient's unique blood composition. This biomolecular corona is important because it affects the in vivo fate and biodistribution …


Biofabrication Of Human Tissue-On-A-Chip Models Using Engineered Biocompatible Electrospun Scaffolds, Zayra Naomi Dorado May 2024

Biofabrication Of Human Tissue-On-A-Chip Models Using Engineered Biocompatible Electrospun Scaffolds, Zayra Naomi Dorado

Open Access Theses & Dissertations

This study explored the adoption of furfuryl gelatin (F-gelatin) based electrospun scaffolds compared with poly-caprolactone (PCL) as promising biomaterials for tissue engineering applications. Tissue-on-a-chip models, incorporating F-gelatin and PCL electrospun scaffolds, offer promising avenues for healthy and disease-in-vitro tissue models that can be explored to investigate underlying physiological mechanisms involved in disease development. Previous research has demonstrated the cytocompatibility of F-gelatin when used for modifying implant surfaces and tissue repair applications [1]. Our earlier published works have also successfully utilized F-gelatin for in-vitro cardiac tissue engineering [2][3]. We designed F-gelatin and PCL electrospun scaffolds to replicate the native tissue extracellular …


Selective Transfection Of A Transferrin Receptor-Expressing Cell Line With Dna-Lipid Nanoparticles And Synthesis Of Parasite-Derived Glycans As Biomarkers For Leishmaniasis, Irodiel Vinales Lozano May 2024

Selective Transfection Of A Transferrin Receptor-Expressing Cell Line With Dna-Lipid Nanoparticles And Synthesis Of Parasite-Derived Glycans As Biomarkers For Leishmaniasis, Irodiel Vinales Lozano

Open Access Theses & Dissertations

Despite notable progress in lipid nanoparticle (LNP)-mediated gene delivery, achieving selective transfection of specific cell types, such as cancer cells, remains a significant hurdle, hindering the advancement of innovative gene therapies. In this study, we engineered an LNP formulation encapsulating plasmid DNA (pDNA) encoding the monomeric Green Lantern (mGL) fluorescent reporter protein. The DT7 peptide ligand targeting human transferrin receptor 1 (hTfR1) was also conjugated to the LNP surface for targeted delivery to hTfR1-expressing cells. Optimization of LNP composition yielded favorable particle diameter, ζ-potential, yield, and pDNA encapsulation efficiency. Evaluation of transfection selectivity using a panel of two engineered cell …


Developing General Purpose Apps To Automate Image Analysis Of Wave-Augmented-Varicose-Explosion Atomization And Other Multi-Phase Interfacial Flows, Ethan Newkirk May 2024

Developing General Purpose Apps To Automate Image Analysis Of Wave-Augmented-Varicose-Explosion Atomization And Other Multi-Phase Interfacial Flows, Ethan Newkirk

Senior Honors Theses

Atomization involves disrupting a flow of contiguous liquid into small droplets ranging from one submicron to several hundred microns (micrometers) in diameter through the processes of exerting sufficient forces that disrupt the retaining surface tensions of the liquid. Understanding this phenomenon requires high-speed imaging from physical models or rigorous multiphase computational fluid dynamics models. We produce a MATLAB application that utilizes various methods of image analysis to quickly analyze and store mathematical data from detailed image analyses. We present a user with numerous tools and capabilities that provide results that deviate from 1.8% to 8.9% of the original image sequence …


Ultra-Sensitive Visible-Ir Range Fiber Based Plasmonic Sensor: A Finite-Element Analysis And Deep Learning Approach For Ri Prediction, Mohammad Al Mahfuz, Sumaiya Afroj, Afiquer Rahman, Md. Azad Hossain, Md. Anwar Hossain, Md Selim Habib Apr 2024

Ultra-Sensitive Visible-Ir Range Fiber Based Plasmonic Sensor: A Finite-Element Analysis And Deep Learning Approach For Ri Prediction, Mohammad Al Mahfuz, Sumaiya Afroj, Afiquer Rahman, Md. Azad Hossain, Md. Anwar Hossain, Md Selim Habib

Electrical Engineering and Computer Science Faculty Publications

In this paper, a relatively simple and ultra-sensitive Photonic crystal fiber (PCF) based surface plasmon resonance (SPR) sensor is proposed for detecting different analyte refractive indices (RIs) ranging from 1.33 to 1.43 over a wide range of wavelength spectrum spanning 0.55 μm to 3.50 μm. The comprehensive finite-element simulations indicate that it is possible to achieve remarkable sensing performances such as wavelength sensitivity (WS) and figure of merit (FOM) as high as 123,000 nm/RIU and 683 RIU-1, respectively, and extremely low value of wavelength resolution (WR) about 8.13×10−7 RIU. A novel artificial neural network (ANN) model is …


Farm Electricity System Simulator (Fess): A Platform For Simulating Electricity Utilisation On Dairy Farms, F. Buckley, J. Upton, R. Prendergast, L. Shalloo, Michael D. Murphy Apr 2024

Farm Electricity System Simulator (Fess): A Platform For Simulating Electricity Utilisation On Dairy Farms, F. Buckley, J. Upton, R. Prendergast, L. Shalloo, Michael D. Murphy

Publications

The objective of this paper was to define, validate and demonstrate a model capable of accurately simulating dairy farm electricity consumption across varying herd and parlour sizes, to facilitate research investigating renewable energy systems (RES) and demand side management (DSM). The Farm Electricity System Simulator (FESS) was developed using grey-box modelling techniques utilizing empirical data for parameter tuning. Empirical data were gathered from nine spring calving, pasture based dairy farms located in the Republic of Ireland. A k-means clustering analysis was conducted, separating the farms into three, near homogenous groups, from which representative farms were selected. FESS was trained using …


Surface Treatments' Effects On The Capacitor's Dielectric Performance Under Electro-Thermal Stresses, Haider. M. Umran, Feipeng Wang Apr 2024

Surface Treatments' Effects On The Capacitor's Dielectric Performance Under Electro-Thermal Stresses, Haider. M. Umran, Feipeng Wang

Karbala International Journal of Modern Science

Biaxial-oriented polypropylene (BOPP) films are characterized by unfavorable aging behavior because of their poor susceptibility to high temperatures, humidity, and high electric fields. This makes them unqualified to withstand harsh operating conditions, such as in capacitor applications. This study investigates the impact of annealing BOPP samples at 100 °C for five hours after fluorination at different times (15, 30, and 60 minutes) on their electrical and mechanical performance under electro-thermal stresses. Scanning electron microscope (SEM) images confirm that there is an increase in surface roughness and the formation of a dense layer of fluorine-containing groups monotonically with fluorination time. So, …


Electrochemical Advanced Treatment Of Desulfurization Wastewater From Coal-Fired Power Plants, Ju-Cai Wei, Juan Yi, Xu Wu Apr 2024

Electrochemical Advanced Treatment Of Desulfurization Wastewater From Coal-Fired Power Plants, Ju-Cai Wei, Juan Yi, Xu Wu

Journal of Electrochemistry

Zero-emission of desulfurization wastewater is one of the main demands for coal-fired power plants. As typical high salinity wastewater, it is hard to purify the desulfurization wastewater from coal-fired power plants through traditional physicochemical treatment or biochemical treatment, e.g., COD and Cl. A high concentration of Cl ion in desulfurization wastewater restricts wastewater reuse and zero-emission. Electrochemical technology is an attractive method for high salinity wastewater zero-emission, which provides a versatile, efficient, cost-effective, easily automatable, and clean industrial process. For advanced treatment of effluent after triple box process treatment in power plants, this paper reports an electrochemical …


Sparse Ensemble Networks For Hypserspectral Image Classification, Rakesh Kumar Iyer, Okan Ersoy Apr 2024

Sparse Ensemble Networks For Hypserspectral Image Classification, Rakesh Kumar Iyer, Okan Ersoy

Department of Electrical and Computer Engineering Technical Reports

We explore the efficacy of sparsity and ensemble model in the classification of hyperspectral images, a pivotal task in remote sensing applications. While Convolutional Neural Networks (CNNs) and Transformer models have shown promise in this domain, each exhibits distinct limitations; CNNs excel in capturing the spatial/local features but falter to capture spectral features, whereas Transformers captures the spectral features at the expense of spatial features. Furthermore, the computational cost associated with training several independent CNN and Transformer networks becomes expensive. To address these limitations, we propose a novel ensemble framework comprising pruned CNNs and Transformers, optimizing both spatial and spectral …


Applications, Challenges, And Research Issues For Enabling A Uav Swarm, Jennifer Hahner Apr 2024

Applications, Challenges, And Research Issues For Enabling A Uav Swarm, Jennifer Hahner

Senior Honors Theses

Unmanned aerial vehicle (UAV) swarms have the potential to be useful in numerous applications due to their versatility and ability to operate without human intervention. However, this promising technology still requires further investigation, research, and testing before UAV swarms can be implemented extensively. The level of human intervention needed to control the system determines the differing levels of autonomy for UAV swarms. For swarms to become more independent, efficient algorithms for task and path planning are essential. In addition, accurate communication is essential for swarms to be able to coordinate and accomplish tasks successfully. This paper seeks to provide a …


Low Impedance, Durable, Self-Adhesive Hydrogel Epidermal Electrodes For Electrophysiology Recording, Naiyan Wu Apr 2024

Low Impedance, Durable, Self-Adhesive Hydrogel Epidermal Electrodes For Electrophysiology Recording, Naiyan Wu

McKelvey School of Engineering Theses & Dissertations

Traditional electrodes used for electrophysiology recording, characterized by their hard, dry, and inanimate nature, are fundamentally mismatched with the soft, moist, and bioactive characteristics of biological tissues, leading to suboptimal skin-electrode interfaces. Hydrogel materials, mirroring the high water content and biocompatibility of biological tissues, emerge as promising candidates for epidermal electronic materials due to their adjustable physicochemical properties. However, challenges such as inadequate electrical conductivity, elevated skin impedance, unreliable adhesion in moist conditions, and performance decline from dehydration have significantly restricted the efficacy and applicability of hydrogel-based electrodes. In this thesis, we report a high-performance hydrogel epidermal electrode patch for …