Open Access. Powered by Scholars. Published by Universities.®

Computer Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 8 of 8

Full-Text Articles in Computer Engineering

Qasm-To-Hls: A Framework For Accelerating Quantum Circuit Emulation On High-Performance Reconfigurable Computers, Anshul Maurya Dec 2023

Qasm-To-Hls: A Framework For Accelerating Quantum Circuit Emulation On High-Performance Reconfigurable Computers, Anshul Maurya

Theses and Dissertations

High-performance reconfigurable computers (HPRCs) make use of Field-Programmable Gate Arrays (FPGAs) for efficient emulation of quantum algorithms. Generally, algorithm-specific architectures are implemented on the FPGAs and there is very little flexibility. Moreover, mapping a quantum algorithm onto its equivalent FPGA emulation architecture is challenging. In this work, we present an automation framework for converting quantum circuits to their equivalent FPGA emulation architectures. The framework processes quantum circuits represented in Quantum Assembly Language (QASM) and derives high-level descriptions of the hardware emulation architectures for High-Level Synthesis (HLS) on HPRCs. The framework generates the code for a heterogeneous architecture consisting of a …


Accelerating Machine Learning Inference For Satellite Component Feature Extraction Using Fpgas., Andrew Ekblad Dec 2023

Accelerating Machine Learning Inference For Satellite Component Feature Extraction Using Fpgas., Andrew Ekblad

Theses and Dissertations

Running computer vision algorithms requires complex devices with lots of computing power, these types of devices are not well suited for space deployment. The harsh radiation environment and limited power budgets have hindered the ability of running advanced computer vision algorithms in space. This problem makes running an on-orbit servicing detection algorithm very difficult. This work proposes using a low powered FPGA to accelerate the computer vision algorithms that enable satellite component feature extraction. This work uses AMD/Xilinx’s Zynq SoC and DPU IP to run model inference. Experiments in this work centered around improving model post processing by creating implementations …


Evaluating And Improving The Seu Reliability Of Artificial Neural Networks Implemented In Sram-Based Fpgas With Tmr, Brittany Michelle Wilson Jun 2020

Evaluating And Improving The Seu Reliability Of Artificial Neural Networks Implemented In Sram-Based Fpgas With Tmr, Brittany Michelle Wilson

Theses and Dissertations

Artificial neural networks (ANNs) are used in many types of computing applications. Traditionally, ANNs have been implemented in software, executing on CPUs and even GPUs, which capitalize on the parallelizable nature of ANNs. More recently, FPGAs have become a target platform for ANN implementations due to their relatively low cost, low power, and flexibility. Some safety-critical applications could benefit from ANNs, but these applications require a certain level of reliability. SRAM-based FPGAs are sensitive to single-event upsets (SEUs), which can lead to faults and errors in execution. However there are techniques that can mask such SEUs and thereby improve the …


Dynamic Reconfigurable Real-Time Video Processing Pipelines On Sram-Based Fpgas, Andrew Elbert Wilson Jun 2020

Dynamic Reconfigurable Real-Time Video Processing Pipelines On Sram-Based Fpgas, Andrew Elbert Wilson

Theses and Dissertations

For applications such as live video processing, there is a high demand for high performance and low latency solutions. The configurable logic in FPGAs allows for custom hardware to be tailored to a specific video application. These FPGA designs require technical expertise and lengthy implementation times by vendor tools for each unique solution. This thesis presents a dynamically configurable topology as an FPGA overlay to deploy custom hardware processing pipelines during run-time by utilizing dynamic partial reconfiguration. Within the FPGA overlay, a configurable topology with a routable switch allows video streams to be copied and mixed to create complex data …


An Overlay Architecture For Pattern Matching, Rasha Elham Karakchi Apr 2020

An Overlay Architecture For Pattern Matching, Rasha Elham Karakchi

Theses and Dissertations

Deterministic and Non-deterministic Finite Automata (DFA and NFA) comprise the fundamental unit of work for many emerging big data applications, motivating recent efforts to develop Domain-Specific Architectures (DSAs) to exploit fine-grain parallelism available in automata workloads.

This dissertation presents NAPOLY (Non-Deterministic Automata Processor Over- LaY), an overlay architecture and associated software that attempt to maximally exploit on-chip memory parallelism for NFA evaluation. In order to avoid an upper bound in NFA size that commonly affects prior efforts, NAPOLY is optimized for runtime reconfiguration, allowing for full reconfiguration in 10s of microseconds. NAPOLY is also parameterizable, allowing for offline generation of …


Adaptive-Hybrid Redundancy For Radiation Hardening, Nicolas S. Hamilton Sep 2019

Adaptive-Hybrid Redundancy For Radiation Hardening, Nicolas S. Hamilton

Theses and Dissertations

An Adaptive-Hybrid Redundancy (AHR) mitigation strategy is proposed to mitigate the effects of Single Event Upset (SEU) and Single Event Transient (SET) radiation effects. AHR is adaptive because it switches between Triple Modular Redundancy (TMR) and Temporal Software Redundancy (TSR). AHR is hybrid because it uses hardware and software redundancy. AHR is demonstrated to run faster than TSR and use less energy than TMR. Furthermore, AHR allows space vehicle designers, mission planners, and operators the flexibility to determine how much time is spent in TMR and TSR. TMR mode provides faster processing at the expense of greater energy usage. TSR …


Progressive Network Deployment, Performance, And Control With Software-Defined Networking, Daniel J. Casey Mar 2018

Progressive Network Deployment, Performance, And Control With Software-Defined Networking, Daniel J. Casey

Theses and Dissertations

The inflexible nature of traditional computer networks has led to tightly-integrated systems that are inherently difficult to manage and secure. New designs move low-level network control into software creating software-defined networks (SDN). Augmenting an existing network with these enhancements can be expensive and complex. This research investigates solutions to these problems. It is hypothesized that an add-on device, or "shim" could be used to make a traditional switch behave as an OpenFlow SDN switch while maintaining reasonable performance. A design prototype is found to cause approximately 1.5% reduction in throughput for one ow and less than double increase in latency, …


Accuracy, Cost And Performance Trade-Offs For Streaming Set-Wise Floating Point Accumulation On Fpgas, Krishna Kumar Nagar Jan 2013

Accuracy, Cost And Performance Trade-Offs For Streaming Set-Wise Floating Point Accumulation On Fpgas, Krishna Kumar Nagar

Theses and Dissertations

The set-wise summation operation is perhaps one of the most fundamental and widely used operations in scientific applications. In these applications, maintaining the accuracy of the summation is also important as floating point operations have inherent errors associated with them. Designing floating-point accumulators presents a unique set of challenges: double-precision addition is usually deeply pipelined and without special micro-architectural or data scheduling techniques, the data hazard that exists. There have been several efforts to design floating point accumulators and accurate summation architecture using different algorithms on FPGAs but these problems have been dealt with separately. In this dissertation, we present …