Open Access. Powered by Scholars. Published by Universities.®

Civil Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 12 of 12

Full-Text Articles in Civil Engineering

Comparing The Measured And Thermodynamically Predicted Afm Phases In A Hydrating Cement, Niall Holmes Dr., Mark Russell, Geoff Davis, Mark Tyrer Oct 2022

Comparing The Measured And Thermodynamically Predicted Afm Phases In A Hydrating Cement, Niall Holmes Dr., Mark Russell, Geoff Davis, Mark Tyrer

Articles

In hydrating Portland cements, more than one of the AFm family of calcium aluminates may exist. Depending on the amount of carbonate and sulfate present in the cement, the most common phase to precipitate is monosulfate, monocarbonate and/or hemicarbonate. It has been reported in the literature that hemicarbonate often appears in measurements such as XRD but not predicted to form/equilibrate in thermodynamic models. With the ongoing use of commercial cements such as CEM I and CEM II containing more and more limestone, it is important to understand which hydrate solids physically precipitate and numerically predict over time. Using 27 cement …


Employing Discrete Solid Phases To Represent C-S-H Solid Solutions In The Cemdata07 Thermodynamic Database To Model Cement Hydration Using The Phreeqc Geochemical Software, Niall Holmes Dr., Mark Tyrer, Denis Kelliher Oct 2022

Employing Discrete Solid Phases To Represent C-S-H Solid Solutions In The Cemdata07 Thermodynamic Database To Model Cement Hydration Using The Phreeqc Geochemical Software, Niall Holmes Dr., Mark Tyrer, Denis Kelliher

Articles

This paper presents a cement hydration model over time using the cemdata07 thermodynamic database and a series of derived discrete solid phases (DSPs) to represent calcium silicate hydrate (C-S-H) as a binary solid solution with two end-members. C-S-H in cement is amorphous and poorly crystalline with a range of molar Ca/Si ratios from 0.6 to 1.7. It displays strongly incongruent dissolution behaviour, where the release of calcium into solution is several orders of magnitude greater than silicon. It is, therefore, important that any cement hydration model provides a credible account of this behaviour. C-S-H has been described in the cemdata07 …


Modelling The Hydrating Behaviour Of Fly-Ash In Blended Cements Using Thermodynamics, Nikki Shaji, Niall Holmes Dr., Mark Tyrer Sep 2022

Modelling The Hydrating Behaviour Of Fly-Ash In Blended Cements Using Thermodynamics, Nikki Shaji, Niall Holmes Dr., Mark Tyrer

Conference papers

This paper presents a new method to thermodynamically model the hydration behaviour of fly-ash (FA) blended cements by deriving individual phase descriptions depending on the proportion of FA in the blended cement. The predicted hydrated phase assemblage, pore solution chemistries and pH over 1,000 days of hydration and with increasing FA proportions are presented. The thermodynamic data for the FA phases are derived using oxide proportions and mineral compositions are copied directly into the PHREEQC input file. The FA phases take account of all minerals to give a more accurate description of its behaviour during hydration. The calcium aluminosilicate hydrate …


Deriving Discrete Solid Phases From Csh-3t And Cshq End-Members To Model Cement Hydration In Phreeqc, Niall Holmes Dr., Colin Walker, Mark Tyrer, Denis Kelliher Aug 2022

Deriving Discrete Solid Phases From Csh-3t And Cshq End-Members To Model Cement Hydration In Phreeqc, Niall Holmes Dr., Colin Walker, Mark Tyrer, Denis Kelliher

Conference papers

This paper presents a cement hydration model over time using the CEMDATA thermodynamic database and a series of discrete solid phases (DSP) to represent calcium silicate hydrate (C-S-H) as a ternary (CSH-3T) and quaternary (CSHQ) solid solution. C-S-H in cement is amorphous and poorly crystalline with a range of molar Ca/Si ratios = 0.6-1.7 and displays strongly incongruent dissolution behaviour where the release of calcium into solution is several orders of magnitude greater than silicon. It is therefore important that any cement hydration model provides a credible account of this behaviour. C-S-H has been described in the CEMDATA thermodynamic database …


The Effects Of Curing Temperature On The Hydration Kinetics Of Plain And Fly Ash Pastes And Compressive Strength Of Corresponding Mortars With And Without Nano-Tio2 Addition., Dan Huang, Mirian Velay-Lizancos, Jan Olek Jul 2022

The Effects Of Curing Temperature On The Hydration Kinetics Of Plain And Fly Ash Pastes And Compressive Strength Of Corresponding Mortars With And Without Nano-Tio2 Addition., Dan Huang, Mirian Velay-Lizancos, Jan Olek

International Conference on Durability of Concrete Structures

Incorporation of fly ash in cementitious systems containing ordinary portland cement (OPC) increases their long-term strength and durability. However, replacement of cement by fly ash also reduces the heat of hydration of such systems and reduces early-age strength development. The reduced rate of strength development can increase the risk of durability problems, e.g. scaling, in cases when young concrete is exposed to low temperatures and deicing chemicals. This study investigated the potential of nano-titanium dioxide (nano-TiO2) particles to modify the hydration kinetics of fly ash pastes and compressive strength development of corresponding mortars cured under low (4°C) and …


Studying The Effects Of Various Process Parameters On Early Age Hydration Of Single- And Multi-Phase Cementitious Systems, Rachel Cook Jan 2020

Studying The Effects Of Various Process Parameters On Early Age Hydration Of Single- And Multi-Phase Cementitious Systems, Rachel Cook

Doctoral Dissertations

”The hydration of multi-phase ordinary Portland cement (OPC) and its pure phase derivatives, such as tricalcium silicate (C3S) and belite (ß-C2S), are studied in the context varying process parameters -- for instance, variable water content, water activity, superplasticizer structure and dose, and mineral additive type and particle size. These parameters are studied by means of physical experiments and numerical/computational techniques, such as: thermodynamic estimations; numerical kinetic-based modelling; and artificial intelligence techniques like machine learning (ML) models. In the past decade, numerical kinetic modeling has greatly improved in terms of fitting experimental, isothermal calorimetry to kinetic-based modelling …


Development Of Engineered Cementitious Composites With Conductive Inclusions For Use In Self-Sensing Applications, Benny Suryanto Dr, Danah Saraireh Ms, Steven Walls Mr, Jaehwan Kim Dr, W John Mccarter Prof Nov 2019

Development Of Engineered Cementitious Composites With Conductive Inclusions For Use In Self-Sensing Applications, Benny Suryanto Dr, Danah Saraireh Ms, Steven Walls Mr, Jaehwan Kim Dr, W John Mccarter Prof

International Conference on Durability of Concrete Structures

The mechanical and a.c. electrical properties of a new varietal of engineered cementitious composite (ECC) incorporating conductive inclusions are presented. Electrical measurements were undertaken over a wide frequency range while curing and when under uniaxial tensile loading to study the influence of ongoing hydration and multiple microcrack formation on the composite electrical impedance. When presented in Nyquist format, the work shows that conductive inclusions reduce the bulk resistance of the composite while enhancing its polarizability, transforming the classic, single-arc bulk response of typical cement-based materials to a two-arc response. The bulk resistance was shown to increase with time and damage, …


Modelling The Addition Of Limestone In Cement Using Hydcem, Niall Holmes, Denis Kelliher, Mark Tyrer Sep 2019

Modelling The Addition Of Limestone In Cement Using Hydcem, Niall Holmes, Denis Kelliher, Mark Tyrer

Conference papers

Hydration models can aid in the prediction, understanding and description of hydration behaviour over time as the move towards more sustainable cements continues.

HYDCEM is a new model to predict the phase assemblage, degree of hydration and heat release over time for cements undergoing hydration for any w/c ratio and curing temperatures up to 450C. HYDCEM, written in MATLAB, complements more sophisticated thermodynamic models by predicting these properties over time using user-friendly inputs within one code. A number of functions and methods based on up to date cement hydration behaviour from the literature are hard-wired into the code along with …


Hydcem: A New Cement Hydration Model, Niall Holmes, Denis Kelliher, Mark Tyrer Aug 2019

Hydcem: A New Cement Hydration Model, Niall Holmes, Denis Kelliher, Mark Tyrer

Conference papers

Hydration models are useful to predict, understand and describe the behaviour of different cementitious-based systems. They are indispensable for undertaking long-term performance and service life predictions for existing and new products for generating quantitative data in the move towards more sustainable cements while optimising natural resources. One such application is the development of cement-based thermoelectric applications.

HYDCEM is a new model to predict the phase assemblage, degree of hydration, heat release and changes in pore solution chemistry over time for cements undergoing hydration for any w/c ratio and curing temperatures up to 450C. HYDCEM, written in MATLAB, is aimed at …


Introducing A New Cement Hydration And Microstructure Model, Niall Holmes, Anselm Griffin, Bernard Enright, Denis Keliher Aug 2018

Introducing A New Cement Hydration And Microstructure Model, Niall Holmes, Anselm Griffin, Bernard Enright, Denis Keliher

Conference papers

This paper presents a new cement hydration model to predict the microstructure evolution of hydrating tricalcium silicate (C3S). The model is written in MATLAB and employs the continuum approach and integrated particle kinetic relationships to show the change in C3S and the growth of Calcium Silicate Hydrate (C-S-H) and Calcium Hydroxide (CH) in the pore space over time.

Cement hydration is a highly complex process. While hydration models should never completely remove experimental analysis, they are an aid to better understand cement hydration and microstructure development by providing a method to analyse a large number of pastes with different cementitious …


Effect Of Cement Chemistry And Properties On Activation Energy, Andre J. Bien-Aime Jan 2013

Effect Of Cement Chemistry And Properties On Activation Energy, Andre J. Bien-Aime

USF Tampa Graduate Theses and Dissertations

The objective of this work is to examine the effect of cement chemistry and physical properties on activation energy. Research efforts indicated that time dependent concrete properties such as strength, heat evolution, and thermal cracking are predictable through the concept of activation energy. Equivalent age concept, which uses the activation energy is key to such predictions. Furthermore, research has shown that Portland cement concrete properties are affected by particles size distribution, Blaine fineness, mineralogy and chemical composition. In this study, four Portland cements were used to evaluate different methods of activation energy determination based on strength and heat of hydration …


Influence Of Curing Conditions On Strength Properties And Maturity Development Of Concrete, Scott Andrew Newbolds, Jan Olek Jan 2002

Influence Of Curing Conditions On Strength Properties And Maturity Development Of Concrete, Scott Andrew Newbolds, Jan Olek

JTRP Technical Reports

In this study, the results of both laboratory studies and a field study, conducted to evaluate the effects of different curing conditions on the strength properties and maturity development of pavement concrete, are presented. Further, a laboratory study was performed to evaluate the maturity concept in relation to the degree of hydration of cement. Concrete specimens, beams and cylinders, were prepared in the field study. The specimens in the field were cured in one of four curing conditions: lime bath, sandpit, air, or by temperature match curing. Specimens were tested for flexural strength and compressive strength, respectively. The temperature of …