Open Access. Powered by Scholars. Published by Universities.®

Transport Phenomena Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Transport Phenomena

Elucidating The Mechanical And Transport Properties Of Lignin-Based Hydrogel Composites, Nicholas Gregorich May 2023

Elucidating The Mechanical And Transport Properties Of Lignin-Based Hydrogel Composites, Nicholas Gregorich

All Dissertations

The use of lignin in the fabrication of soft composites has become an emerging area of research in polymer science and polymer chemistry. These lignin-based materials present numerous benefits, notably, a reduction in the use of petroleum-based precursor, improved structural benefits to otherwise soft host polymers, as well as the inherent antimicrobial and antioxidant properties of lignin, making it suitable for biomaterials. Herein, we present two chemical reaction pathways of incorporating lignin that was fractionated and cleaned using the Aqueous Lignin Purification with Hot Agents (ALPHA) process into poly(vinyl alcohol) (PVA) hydrogel composites for aqueous-based separations. By leveraging the ALPHA …


Fate And Transport Of Toxoplasma Gondii Oocysts In Saturated Porous Media: Effects Of Electrolytes And Natural Organic Matter, Christian Pullano May 2022

Fate And Transport Of Toxoplasma Gondii Oocysts In Saturated Porous Media: Effects Of Electrolytes And Natural Organic Matter, Christian Pullano

All Theses

Toxoplasma gondii is a pathogenic microorganism that is currently a threat to public health. Understanding the fate and transport of T. gondii through the soil and groundwater is vital in determining the risk it poses to water resources and human health. The physico-chemical interactions between the groundwater and the bio colloid within an aquifer will dictate its mobility and its ability to infect humans. This research examines how various naturally occurring groundwater chemistries containing organic compounds and monovalent and divalent salt solutions will alter the fate and transport of T. gondii. Solutions containing various concentrations of humic acid, fulvic …


Exploration Of The Sludge Biodiesel Pathway, Zachary Christman May 2021

Exploration Of The Sludge Biodiesel Pathway, Zachary Christman

Department of Agronomy and Horticulture: Dissertations, Theses, and Student Research

Wastewater sludge is an overlooked source of fat, oil, and grease (FOG) that could be converted into biodiesel. The United States produces about 8 million tons of sludge per year. The disposal cost for this amount of sludge is about 2 billion dollars. The widespread availability and low cost of sludge compared to other biodiesel raw materials make it an economical choice for a renewable fuel. Using sludge as a raw material can produce 25 to 30 mg per gram of fatty acid methyl ester (FAME); the main component of biodiesel. Sludge biodiesel has the potential of transforming a portion …


Breaking Coastal Hypoxia: Destratification Of Gulf Of Mexico Deadzone To Encourage Oxygen Transport Downwards To Maintain Marine Fauna, Veda Thipparthi Nov 2019

Breaking Coastal Hypoxia: Destratification Of Gulf Of Mexico Deadzone To Encourage Oxygen Transport Downwards To Maintain Marine Fauna, Veda Thipparthi

LSU Master's Theses

As a consequence of seasonal eutrophication and human input, a vast hypoxic area termed The Dead Zone develops every year in the Gulf of Mexico (GOM) during summer along the Louisiana coastline characterized by vertical seawater density-stratification with oxygen concentrations less than 2 mg.l-1 at the seafloor. It poses a threat to bottom-dwelling faunae and their environment which has negative ecological and economic consequences. This project aims to mitigate hypoxia by employing mechanical impellers placed at strategic water depths and locations in the Gulf. Enhanced transport of oxygen results by mixing oxygen-enriched seawater at the surface, downward into the …


Transport Resistance In Polymer Electrolyte Fuel Cells, Jon Patrick Owejan May 2014

Transport Resistance In Polymer Electrolyte Fuel Cells, Jon Patrick Owejan

Doctoral Dissertations

Fuel cells offer the potential for high efficiency energy conversion with only water and heat as significant products of the electrochemical reaction. For a cost-competitive product, fuel cell researchers are exploring the limits of the Pt catalyst loading in parallel with performance and durability trade-offs. A significant portion of the performance loss in low-cost PEMFCs is associated with the partial pressure of oxygen (for an air cathode) at the Pt surface. This dissertation explores the main components of oxygen transport resistance which are associated with diffusion through partially saturated porous media and the ionomer coating in the catalyst layer.

Under …