Open Access. Powered by Scholars. Published by Universities.®

Other Chemical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 7 of 7

Full-Text Articles in Other Chemical Engineering

Optimising The Performance Of Cement-Based Batteries, Aimee Byrne, Shane Barry, Niall Holmes Dr., Brian Norton Jan 2017

Optimising The Performance Of Cement-Based Batteries, Aimee Byrne, Shane Barry, Niall Holmes Dr., Brian Norton

Articles

The development of a battery using different cement-based electrolytes to provide a low but potentially sustainable source of electricity is described. The current, voltage, and lifespan of batteries produced using different electrolyte additives, copper plate cathodes, and (usually) aluminium plate anodes were compared to identify the optimum design, components, and proportions to increase power output and longevity. Parameters examined include water/cement ratio, anode to cathode surface area ratio, electrode material, electrode spacing, and the effect of sand, aggregate, salts, carbon black, silica fume, and sodium silicate on the electrolyte. The results indicate that the greatest and longest lasting power can …


An Overview Of The Development Of Cement-Based Batteries For The Cathodic Protection Of Embedded Steel In Concrete, Aimee Byrne, Niall Holmes, Brian Norton Jan 2016

An Overview Of The Development Of Cement-Based Batteries For The Cathodic Protection Of Embedded Steel In Concrete, Aimee Byrne, Niall Holmes, Brian Norton

Conference papers

This paper presents an overview of the cement-based batteries developed in DIT for use in the cathodic protection of embedded steel in reinforced concrete undergoing chloride-induced corrosion. Cathodic protection delivers an external current (approximately 20mA per m2 of embedded steel) which effectively polarises the internal current generated during corrosion. The batteries developed in DIT comprise of a cement-based electrolyte containing different additives including sand, aggregate, salts, carbon black and plasticiser with protruding anode and cathode metal plates. These batteries produced an initial electrical output of 1.5V and 23mA through a 10 resistor as measured using data acquisition units and a …


Study Level Design And Economic Analysis Of A 7 Mw Bromine-Polysulfide Redox Flow Battery, David Lawson Allen, Kelli Jean Byrne, Amanda Marie Jones, Allie Southerland May 2014

Study Level Design And Economic Analysis Of A 7 Mw Bromine-Polysulfide Redox Flow Battery, David Lawson Allen, Kelli Jean Byrne, Amanda Marie Jones, Allie Southerland

Chancellor’s Honors Program Projects

No abstract provided.


A Base Case Design And Capital Cost Analysis Of An All Vanadium Redox-Flow Battery, Mark Alan Moore Aug 2013

A Base Case Design And Capital Cost Analysis Of An All Vanadium Redox-Flow Battery, Mark Alan Moore

Masters Theses

Interest in the development of redox-flow batteries (RFBs) for large-scale grid storage is growing, and considerable investments have been made into the research and development of RFBs over the past few decades. Unfortunately, practical implementation has been hampered by various cost and performance issues typical of an immature state of development. One critical factor for the competitiveness of this technology is the installed cost. The purpose of this work is to develop an evolutionary procedure to be used for the base-case design of a Vanadium Redox-Flow Battery, and to incorporate recent developments in all-vanadium RFB research in order to present …


The Impact Of Driving Conditions On Phev Battery Performance, Nathan Christensen, John Patten, Steven Srivastava, Gary P. Nola Nov 2011

The Impact Of Driving Conditions On Phev Battery Performance, Nathan Christensen, John Patten, Steven Srivastava, Gary P. Nola

john a patten

The battery performance of a modified Prius with a 5 kWh plug-in battery was documented for a year to determine the impact of environmental conditions and user attributes on vehicle performance. Both fuel economy and pure electrical efficiency were compared to ambient temperature. The fuel economy has a positive relationship with ambient temperature until approximately 70˚F where the efficiency begins to drop. Electrical performance has a positive linear relationship with ambient temperature. With the emergence of electric vehicles (EVs) and PHEVs from a variety of automotive manufacturers, information on EV and PHEV performance for consumers will become more important.


The Impact Of Driving Conditions On Phev Battery Performance, Nathan Christensen, John Patten, Steven Srivastava, Gary P. Nola Jan 2011

The Impact Of Driving Conditions On Phev Battery Performance, Nathan Christensen, John Patten, Steven Srivastava, Gary P. Nola

Green Manufacturing Research Journal

The battery performance of a modified Prius with a 5 kWh plug-in battery was documented for a year to determine the impact of environmental conditions and user attributes on vehicle performance. Both fuel economy and pure electrical efficiency were compared to ambient temperature. The fuel economy has a positive relationship with ambient temperature until approximately 70˚F where the efficiency begins to drop. Electrical performance has a positive linear relationship with ambient temperature. With the emergence of electric vehicles (EVs) and PHEVs from a variety of automotive manufacturers, information on EV and PHEV performance for consumers will become more important.


An Analysis Of A Back Fed Porous Electorde For The Br2/Br- Redox Reaction, John W. Van Zee, Ralph E. White Jan 1983

An Analysis Of A Back Fed Porous Electorde For The Br2/Br- Redox Reaction, John W. Van Zee, Ralph E. White

Faculty Publications

No abstract provided.