Open Access. Powered by Scholars. Published by Universities.®

Membrane Science Commons

Open Access. Powered by Scholars. Published by Universities.®

2016

Discipline
Institution
Keyword
Publication
Publication Type

Articles 1 - 12 of 12

Full-Text Articles in Membrane Science

Plasmonic Pervaporation For Sustainable Mixture Separation, Ty Austin Dec 2016

Plasmonic Pervaporation For Sustainable Mixture Separation, Ty Austin

Chemical Engineering Undergraduate Honors Theses

The U.S. Department of Energy suggests that ca. 40% of the total energy consumed in the chemical and refining industries is used for distillation.1 One potentially energy efficient alternative is pervaporation, a membrane separation process that uses differences in solvent permeability and vaporization rates to encourage mixture separation. Pervaporation has become a valuable tool in the processes of producing biofuels, recovering water, and removing solvent.2,3 However, implementation has been hindered by heating the feed to the membrane and cooling the unpermeated retentate to increase membrane throughput at a higher energy cost. Preliminary research has shown that locally heating …


Hollow Fiber Membranes For Artificial Lung Applications, Lauren Reed Dec 2016

Hollow Fiber Membranes For Artificial Lung Applications, Lauren Reed

Chemical Engineering Undergraduate Honors Theses

Artificial lungs are in use, but difficult issues remain in the field of membrane development related to fouling issues. Currently there are external artificial lungs circulating blood outside the body, taking out the carbon dioxide, and inserting oxygenated blood back into the body. An example of this type of machine is the ExtraCorporeal Membrane Oxygenation (ECMO) machine currently used in hospitals. The ECMO takes over the functions for both the lungs and the heart but is only available for short term use by patients with respiratory failure due to infections [1]. The fibers in the machine develop fouling due to …


Biopolymer Electrospun Nanofiber Mats To Inactivate And Remove Bacteria, Katrina Ann Rieger Nov 2016

Biopolymer Electrospun Nanofiber Mats To Inactivate And Remove Bacteria, Katrina Ann Rieger

Doctoral Dissertations

The persistence of antibiotic resistance in bacterial pathogens remains a primary concern for immunocompromised and critically-ill hospital patients. Hospital associated infections can be deadly and reduce the successes of medical advancements, such as, cancer therapies and medical implants. Thus, it is imperative to develop materials that can (i) deliver new antibiotics with accuracy, as well as (ii) uptake pathogenic microbes. In this work, we will demonstrate that electrospun nanofiber mats offer a promising platform for both of these objectives because of their high surface-to-volume ratio, interconnected high porosity, gas permeability, and ability to contour to virtually any surface. To provide …


Polymer And Small Molecule Designs For Anion Conducting Membranes: Connected Ion-Channel Morphologies And Highly Alkaline Stable Ammonium Cations, Sedef P. Ertem Nov 2016

Polymer And Small Molecule Designs For Anion Conducting Membranes: Connected Ion-Channel Morphologies And Highly Alkaline Stable Ammonium Cations, Sedef P. Ertem

Doctoral Dissertations

Fuel cells are one of the oldest sustainable energy generation devices, converting chemical energy into electrical energy via reverse-electrolysis reactions. With the rapid development of polymer science, solid polymer electrolyte (SPE) membranes replaced the conventional liquid ion transport media, rendering low-temperature fuel cells more accessible for applications in portable electronics and transportation. However, SPE fuel cells are still far from commercialization due to high operation cost, and insufficient lifetime and performance limitations. Anion exchange membrane fuel cells (AEMFCs) are inexpensive alternatives to current proton exchange membrane fuel cell (PEMFC) technology, which relies on utilizing expensive noble-metal catalysts and perfluorinated SPE …


Preparation Of Nano-Size Ceramic Membrane From Industrial Waste, Shereen K. Amin, Mai H. Roushdy, Chakinaz Aly El-Sherbiny, Heba Mohamed Abdallah, Magdi F. Abadir Nov 2016

Preparation Of Nano-Size Ceramic Membrane From Industrial Waste, Shereen K. Amin, Mai H. Roushdy, Chakinaz Aly El-Sherbiny, Heba Mohamed Abdallah, Magdi F. Abadir

Chemical Engineering

Industrial ceramic wastes are becoming an increasing problem worldwide. Recently, this problem has attracted social concern due to the growing amounts of waste despite the measures and precautions that have been taken worldwide aiming at managing such wastes. One promising solution that has been recently researched consists incorporating such wastes in ceramic bodies which besides minimizing the waste load often improve the quality of the ceramic body. Roller kilns used in the production of ceramic tiles are routinely ground to remove traces of contamination. The fine ground powder is usually discarded as a useless waste. In the present paper, the …


Mass And Charge Transport In Hydrated Polymeric Membranes, Marshall T. Mcdonnell Aug 2016

Mass And Charge Transport In Hydrated Polymeric Membranes, Marshall T. Mcdonnell

Doctoral Dissertations

Mass and charge transport through hydrated polymer membranes has significant importance for many areas of engineering and industry. Multi-scale modeling and simulation techniques were used to study transport in relation to two specific membrane applications: (1) food packaging and (2) additives for polymer electrolytes.

Chitosan/chitin films were studied due to their use as a sustainable, biodegradable food packaging film. The effects of hydration on the solvation, diffusivity, solubility, and permeability of oxygen molecules in these films were studied via molecular dynamics and confined random walk simulations. With increasing hydration, the membrane was observed to have a more homogeneous water distribution …


Production Of Acetic Acid In Kraft Pulp Mill Biorefinery Using Bi-Polar Membrane Electrodialysis, Ravikant Amogisidha Patil Aug 2016

Production Of Acetic Acid In Kraft Pulp Mill Biorefinery Using Bi-Polar Membrane Electrodialysis, Ravikant Amogisidha Patil

Electronic Theses and Dissertations

The objective of this dissertation was to develop a process for the production of acetic acid in kraft mills. Acetyl groups in hardwood can be hydrolyzed using alkali at 50 °C. The product from this process contains about 15 g/L of sodium acetate and was determined to be suitable for the production of acetic acid.

Experiments performed using aqueous sodium acetate to evaluate the ability of electrodialysis (ED) to separate and concentrate sodium acetate showed that sodium acetate can be concentrated up to 275 g/L starting with an initial concentration of 17 g/L. The transport of water with sodium and …


Synthesis And Characterization Of Polymeric Anion Exchange Membranes, Wenxu Zhang Jul 2016

Synthesis And Characterization Of Polymeric Anion Exchange Membranes, Wenxu Zhang

Doctoral Dissertations

As alkaline anion exchange membrane fuel cells (AAEMFC) are regarded as promising and important energy devices, the development of high performance anion exchange membranes are in urgent need, as well as fundamental investigation on the structure-property relationship, which are the motivation of this dissertation. Three different polymer systems are presented and focused on polymer synthesis, material morphology, and ion transport phenomena. Crosslinked membranes are promising as practical materials, however, the understanding and further improvement of its performance is hindered by the lack of an ordered morphology or well-defined chemical structure. In Chapter 2, a series of crosslinked membranes were design …


Micellular Electrokinetic Chromatography For Studying Amyloid Beta Oligomer Membrane Affinity, Andrew Bryson May 2016

Micellular Electrokinetic Chromatography For Studying Amyloid Beta Oligomer Membrane Affinity, Andrew Bryson

Biomedical Engineering Undergraduate Honors Theses

Amyloid Beta (Aβ) was the major focus of this study. It is a peptide that is present in the brain with a high tendency to self-aggregate. When this protein aggregates, it forms oligomers and protofibrils which in turn are deposited as senile plaques in the brain. The reason for the concern with these plaques is their association with the neurological disorder Alzheimer’s disease. It has been found that the most dangerous oligomers are formed in a portion of the plasma membrane known as lipid rafts. The purpose of this study was to understand how micelles affect the aggregation properties of …


Development Of Pvdf Membrane Nanocomposites Via Various Functionalization Approaches For Environmental Applications, Douglas M. Davenport, Minghui Gui, Lindell E. Ormsbee, Dibakar Bhattacharyya Jan 2016

Development Of Pvdf Membrane Nanocomposites Via Various Functionalization Approaches For Environmental Applications, Douglas M. Davenport, Minghui Gui, Lindell E. Ormsbee, Dibakar Bhattacharyya

Chemical and Materials Engineering Faculty Publications

Membranes are finding wide applications in various fields spanning biological, water, and energy areas. Synthesis of membranes to provide tunable flux, metal sorption, and catalysis has been done through pore functionalization of microfiltration (MF) type membranes with responsive behavior. This methodology provides an opportunity to improve synthetic membrane performance via polymer fabrication and surface modification. By optimizing the polymer coagulation conditions in phase inversion fabrication, spongy polyvinylidene fluoride (PVDF) membranes with high porosity and large internal pore volume were created in lab and full scale. This robust membrane shows a promising mechanical strength as well as high capacity for loading …


Design And Commissioning Of A Community Scale Solar Powered Membrane-Based Water Purification System In Haiti, Shavin Pinto, Yung Wong, Kyle Fennesy, Yan Tang, Marc Compere Jan 2016

Design And Commissioning Of A Community Scale Solar Powered Membrane-Based Water Purification System In Haiti, Shavin Pinto, Yung Wong, Kyle Fennesy, Yan Tang, Marc Compere

Publications

This paper presents the design and commissioning of a solar powered water purification system at the Ryan Epps Home for Children (REHC) in Michaud, Haiti. This system supplies clean drinking water to the 200 children who live and go to school at REHC and also to the community in the form of a micro-business. This micro-business is the mechanism for income generation for sustainable system operation. The purifier uses a three stage filtration system with a disc-type sediment filter, a 0.1 micron ultrafiltration membrane, and an ultraviolet light for disinfection. The backwash cycle extends the life of the ultrafiltration membrane …


An Overview Of Production And Development Of Ceramic Membranes, Shereen Kamel Amin, Heba Mohamed Abdallah, Mai H. Roushdy, Chakinaz Aly El-Sherbiny Jan 2016

An Overview Of Production And Development Of Ceramic Membranes, Shereen Kamel Amin, Heba Mohamed Abdallah, Mai H. Roushdy, Chakinaz Aly El-Sherbiny

Chemical Engineering

Ceramic membranes became one of the most important ceramic products because of their numerous benefits. Many attempts have been made by researchers to produce ceramic membranes with modified properties by varying their raw materials. Some of these attempts included incorporating wastes into their production process. Examples of such waste are fly ash wastes, glass waste, mud resulting from the hydro cyclone laundries, cortical bone animal, coal gangue, sawdust, construction waste and rice husk. An ideal waste would be priceless waste while at the same time assisting minimizing pollution. Such a situation deals with a dual economic and environmental aspect. This …