Open Access. Powered by Scholars. Published by Universities.®

Biomaterials Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Biomaterials

Evaluating Cellular Response Of Different Valve Interstitial Cell (Vic) Phenotypes To Angiotensin I, Smit Patel May 2021

Evaluating Cellular Response Of Different Valve Interstitial Cell (Vic) Phenotypes To Angiotensin I, Smit Patel

Biomedical Engineering Undergraduate Honors Theses

Calcific Aortic Valve Disease (CAVD), one of the leading causes of death in the United States, is characterized by diminished functioning and limited movement of the aortic valve (AV) due to increased thickening, disorganized extracellular matrix elastin fibers, increased collagen content, and abnormal deposition and formation of calcium nodules on the AV [1, 2]. There are two types of CAVD: i) Aortic valve sclerosis (AVS), in which patients suffer from tissue hardening, fibrosis, and early calcification, and ii) calcific aortic stenosis (CAS), representative by excessive calcification on the AV and reduced AV opening, are the two main forms of CAVD …


Developing Aligned Nerve Scaffolds In A 3d Type-I Collagen Gel, Gabriel David May 2021

Developing Aligned Nerve Scaffolds In A 3d Type-I Collagen Gel, Gabriel David

Biomedical Engineering Undergraduate Honors Theses

Despite significant progress in the field of peripheral nerve repair, clinical success is still limited, leaving millions to suffer from peripheral neuropathy with billions spent every year for treatment. Nerve repair methods that are capable of maximizing the regenerative properties of peripheral nerves are greatly desired in the field of medical science. This research aims to fill the gap between modern methods and the future of nerve repair by creating type-I collagen scaffolds with aligned degradation pores that will assist and nurture nerves growing through them. This is achieved by incorporating adipose stem cells into type-I collagen hydrogels and aligning …