Open Access. Powered by Scholars. Published by Universities.®

Biomaterials Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Biomaterials

Synthesis And Characterization Of Diamond-Like Carbon Thin Films For Biomedical Applications, Russell Lee Leonard Dec 2010

Synthesis And Characterization Of Diamond-Like Carbon Thin Films For Biomedical Applications, Russell Lee Leonard

Masters Theses

Diamond-like carbon (DLC) thin films were produced by pulsed laser deposition (PLD) on silicon, fused silica, and silicon nitride substrates. The films produced were either undoped, made using a pure graphite target, or doped, using multi-component targets made from a combination of graphite and silicon, silicon nitride, titanium dioxide, or silicon monoxide. These films were evaluated for their potential use in biomedical applications, including coatings for artificial joints, heart stents, and bronchoscopes. The films were characterized by Raman spectroscopy, atomic force microscopy, ball-on-flat tribometry, contact angle measurements, and spectrophotometry. Film thickness was determined by optical profilometry. Film adhesion was checked …


Developing Chitosan-Based Biomaterials For Brain Repair And Neuroprosthetics, Zheng Cao May 2010

Developing Chitosan-Based Biomaterials For Brain Repair And Neuroprosthetics, Zheng Cao

Masters Theses

Chitosan is widely investigated for biomedical applications due to its excellent properties, such as biocompatibility, biodegradability, bioadhesivity, antibacterial, etc. In the field of neural engineering, it has been extensively studied in forms of film and hydrogel, and has been used as scaffolds for nerve regeneration in the peripheral nervous system and spinal cord. One of the main issues in neural engineering is the incapability of neuron to attach on biomaterials. The present study, from a new aspect, aims to take advantage of the bio-adhesive property of chitosan to develop chitosan-based materials for neural engineering, specifically in the fields of brain …