Open Access. Powered by Scholars. Published by Universities.®

Biomaterials Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 8 of 8

Full-Text Articles in Biomaterials

Regenerative Medicine For Tendon/Ligament Injuries: De Novo Equine Tendon/Ligament Neotissue Generation And Application, Takashi Taguchi Apr 2023

Regenerative Medicine For Tendon/Ligament Injuries: De Novo Equine Tendon/Ligament Neotissue Generation And Application, Takashi Taguchi

LSU Doctoral Dissertations

Tendon and ligament injuries are debilitating conditions across species. Poor regenerative capacities of these tissues limit restoration of original functions. The first study evaluated the effect of cellular administration on tendon/ligament injuries in horses using meta-analysis. The cellular administration was effective in restoring ultrasonographic echogenicity and increasing vascularity during early phase of healing. Additionally, it improved microstructural organization of healed tissue in terms of cellularity and fiber alignment. However, the study did not support its use for increasing rate of return to performance, expression/deposition of tendon-specific genes/proteins, or mechanical properties.

The findings led to the second study that engineered implantable …


Development Of A Crosslinked Osteochondral Xenograft And A Collagen Stabilizing Intra-Articular Injection To Remediate Cartilage Focal Lesions To Prevent Osteoarthritis, Mark Lewis Mosher Dec 2022

Development Of A Crosslinked Osteochondral Xenograft And A Collagen Stabilizing Intra-Articular Injection To Remediate Cartilage Focal Lesions To Prevent Osteoarthritis, Mark Lewis Mosher

Theses and Dissertations

Osteoarthritis is one of the most common causes of disability in adults in America. It is a progressive and degenerative disease where the articular cartilage is broken down and lost from the surfaces of bones causing chronic pain and swelling in the joints, and currently has no cure. The most commonly osteoarthritis starts from a focal lesion on the cartilage surface, which will expand on the surface and downwards through the thickness of the tissue. The current gold standard for correcting cartilage focal lesions is the osteochondral autograft/allograft transplantation (OAT), which replaces the defect with a fresh osteochondral graft. The …


Development Of An Injectable Methylcellulose Hydrogel System For Nucleus Pulposus Repair And Regeneration, Nada A. Haq-Siddiqi Jan 2021

Development Of An Injectable Methylcellulose Hydrogel System For Nucleus Pulposus Repair And Regeneration, Nada A. Haq-Siddiqi

Dissertations and Theses

Low back pain is the most common cause of disability in the world and is often caused by degeneration or injury of the intervertebral disc (IVD). The IVD is a complex, fibrocartilaginous tissue that allows for the wide range of spinal mobility. Disc degeneration is a progressive condition believed to begin in the central, gelatinous nucleus pulposus (NP) region of the tissue, for which there are few preventative therapies. Current therapeutic strategies include pain management and exercise, or surgical intervention such as spinal fusion, none of which address the underlying cause of degeneration. With an increasingly aging population, the socioeconomic …


Development Of A Sonically Powered Biodegradable Nanogenerator For Bone Regeneration, Avi Patel May 2019

Development Of A Sonically Powered Biodegradable Nanogenerator For Bone Regeneration, Avi Patel

Honors Scholar Theses

Background: Reconstruction of bone fractures and defects remains a big challenge in orthopedic surgery. While regenerative engineering has advanced the field greatly using a combination of biomaterial scaffolds and stem cells, one matter of difficulty is inducing osteogenesis in these cells. Recent works have shown electricity’s ability to promote osteogenesis in stem cell lines when seeded in bone scaffolds; however, typical electrical stimulators are either (a) externally housed and require overcomplex percutaneous wires be connected to the implanted scaffold or (b) implanted non-degradable devices which contain toxic batteries and require invasive removal surgeries.

Objective: Here, we establish a biodegradable, piezoelectric …


Towards An In Vitro Model Of Testing Osteoblast Cellular Function In Contact With Various Surfaces, Raheleh Miralami Dec 2018

Towards An In Vitro Model Of Testing Osteoblast Cellular Function In Contact With Various Surfaces, Raheleh Miralami

Theses & Dissertations

Past studies have shown that the success of total joint replacements depends on the biocompatibility of orthopaedic materials, which can be improved by modifying the implant surface. However, the exact roles of these modifications and their effective mechanisms are poorly understood. The objective of this study was to develop and evaluate a model system to investigate the impact of nano-structured surfaces, produced by the ion beam-assisted deposition (IBAD) technique, on biomarkers of osteointegration using an in vitro model. The IBAD technique was employed to deposit zirconium oxide (ZrO2), Titanium oxide (TiO2), and Titanium (Ti) nano-films on …


The Effects Of Emerging Technology On Healthcare And The Difficulties Of Integration, Skyler J. Pavlish-Carpenter Jan 2018

The Effects Of Emerging Technology On Healthcare And The Difficulties Of Integration, Skyler J. Pavlish-Carpenter

Honors Undergraduate Theses

Background: Disruptive technology describes technology that is significantly more advanced than previous iterations, such as: 3D printing, genetic manipulation, stem cell research, innovative surgical procedures, and computer-based charting software. These technologies often require extensive overhauls to implement into older systems and must overcome many difficult financial and societal complications before they can be widely used. In a field like healthcare that makes frequent advancements, these difficulties can mean that the technology will not be utilized to its full potential or implemented at all.

Objective: To determine the inhibiting factors that prevent disruptive technology from being implemented in conventional healthcare.

Methods: …


The Microstructure And The Electrochemical Behavior Of Cobalt Chromium Molybdenum Alloys From Retrieved Hip Implants, Christopher P. Emerson May 2015

The Microstructure And The Electrochemical Behavior Of Cobalt Chromium Molybdenum Alloys From Retrieved Hip Implants, Christopher P. Emerson

FIU Electronic Theses and Dissertations

Because of their excellent mechanical, tribological, and electrochemical properties, Cobalt Chromium Molybdenum alloys have been used as the material for both the stem and head of modular hip implants. Corrosion is one mechanism by which metal debris, from these implants, is generated, which can lead to adverse events that requires revision surgery. Manufacturing process such as wrought, as-cast, and powder metallurgy influences the microstructure, material properties, and performance of these implants

The current research focuses on analyzing the microstructure of CoCrMo alloys from retrieved hip implants with optical and scanning electron microscopy. Additionally, energy disperse spectroscopy was utilized to determine …


Evaluation Of Tissue-Engineered Tendon Enthesis Polymer Constructs, Joshua A. Bundy Bs, Mary Beth Wade Phd, Hitomi Nakao Md, Phillip Mcclellan Phd, Qing Yu Phd, Robin Jacquet-Childs Ms, William J. Landis Phd Jan 2014

Evaluation Of Tissue-Engineered Tendon Enthesis Polymer Constructs, Joshua A. Bundy Bs, Mary Beth Wade Phd, Hitomi Nakao Md, Phillip Mcclellan Phd, Qing Yu Phd, Robin Jacquet-Childs Ms, William J. Landis Phd

Williams Honors College, Honors Research Projects

Both scientists and clinicians have proposed tissue engineering as the future of medicine. The possibilities for tissue engineering, that is, fabrication of tissues and organs in the laboratory and their translation to patients, appear to be endless, and many believe that this new approach in medicine will result in abolishing many common ailments, injuries, and congenital defects. Injuries to a tendon enthesis, the normal tissue connection between tendon and bone, are of particular concern to clinicians because of their frequency and failure to repair as a result of surgery. While these injuries may not be life threatening, they can certainly …