Open Access. Powered by Scholars. Published by Universities.®

Biological Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Biological Engineering

Hydrodeoxygenation Of Aqueous Phase Catalytic Pyrolysis Oil To Liquid Hydrocarbons Using Multi-Functional Nickel Catalyst, Hossein Jahromi, Foster A. Agblevor Sep 2018

Hydrodeoxygenation Of Aqueous Phase Catalytic Pyrolysis Oil To Liquid Hydrocarbons Using Multi-Functional Nickel Catalyst, Hossein Jahromi, Foster A. Agblevor

Biological Engineering Faculty Publications

Herein we investigated the hydrodeoxygenation (HDO) of aqueous phase pinyon-juniper catalytic pyrolysis oil (APPJCPO) using a new multifunctional red mud-supported nickel (Ni/RM) catalyst. The organic liquid yield after HDO of APPJCPO using 30 wt. % Ni/RM at reaction temperature of 350 °C was 47.8 wt. % with oxygen content of 1.14 wt. %. The organic liquid fraction consisted of aliphatics, aromatics, and alkylated aromatic hydrocarbons as well as small amounts of oxygenates. The RM support catalyzed ketonization of carboxylic acids. The Ni metal catalyzed partial reduction of oxygenates that underwent carbonyl alkylation with aldehydes and ketones on the RM. Catalyst …


Hydrotreating Of Guaiacol: A Comparative Study Of Red Mud-Supported Nickel And Commercial Ni/Sio2-Al2o3 Catalysts, Hossein Jahromi, Foster Agblevor May 2018

Hydrotreating Of Guaiacol: A Comparative Study Of Red Mud-Supported Nickel And Commercial Ni/Sio2-Al2o3 Catalysts, Hossein Jahromi, Foster Agblevor

Biological Engineering Faculty Publications

Upgrading of bio-oil through catalytic hydrotreating was investigated with guaiacol as a model compound. A nickel supported on red mud (Ni/RM) hydrotreating catalyst was developed and compared to the standard Ni/SiO2-Al2O3 catalysts under similar experimental conditions. The Ni/RM catalyst was characterized by inductively coupled plasma atomic emission spectrometry (ICP-AES), X-ray diffraction analysis (XRD), scanning electron microscopy (SEM), BET specific surface area, and temperature programmed reduction (TPR). The effects of reaction temperature (300, 350, 400 °C) and initial hydrogen pressure (4.83 MPa (700 psi), 5.52 MPa (800 psi), and 6.21 MPa (900 psi)) on products distribution …


Managing Exoelectrogenic Microbial Community Development Through Bioprocess Control For Conversion Of Biomass-Derived Streams, Alex James Lewis Aug 2017

Managing Exoelectrogenic Microbial Community Development Through Bioprocess Control For Conversion Of Biomass-Derived Streams, Alex James Lewis

Doctoral Dissertations

Bioelectrochemical systems are an emerging technology capable of utilizing aqueous waste streams generated during biomass conversion of lignocellulosic feedstocks to produce valuable co-products and thus, have potential to be integrated into biorefineries. In a microbial electrolysis cell, organic compounds are converted to electrons, protons, and CO2 by fermentative and exoelectrogenic bacteria in the anode compartment. By having the ability to extract electrons from waste streams, these systems can treat water while also producing hydrogen, and thus can improve the efficiency of biomass to fuel production by minimizing external hydrogen requirement and enabling water recycle. The overall goal of this …


Conventional And Catalytic Pyrolysis Of Pinyon Juniper Biomass, Bhuvanesh Kumar Yathavan Dec 2013

Conventional And Catalytic Pyrolysis Of Pinyon Juniper Biomass, Bhuvanesh Kumar Yathavan

All Graduate Theses and Dissertations, Spring 1920 to Summer 2023

Pinyon and juniper are invasive woody species which has occupied more than 47 million acres of land in Western United States. Pinyon juniper woodlands domination decreases the herbaceous vegetation, increase bare lands which in turn increases soil erosion and nutrition loss. Thus, The US Bureau of Land Management (BLM) has focused on harvesting these woody species to make room for herbaceous vegetation. The major application of harvested pinyon-juniper (PJ) is low value firewood. Thus, there is a need to develop new high value products from this woody biomass to reduce the cost of harvesting. In this study pyrolysis was carried …