Open Access. Powered by Scholars. Published by Universities.®

Biomedical Engineering and Bioengineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Nanoparticles

PDF

Discipline
Institution
Publication Year
Publication
Publication Type

Articles 61 - 75 of 75

Full-Text Articles in Biomedical Engineering and Bioengineering

Developent Of A Phospholipid Encapsulation Process For Quantum Dots To Be Used In Biologic Applications, Logan Grimes Jun 2014

Developent Of A Phospholipid Encapsulation Process For Quantum Dots To Be Used In Biologic Applications, Logan Grimes

Master's Theses

The American Cancer Society predicts that 1,665,540 people will be diagnosed with cancer, and 585,720 people will die from cancer in 2014. One of the most common types of cancer in the United States is skin cancer. Melanoma alone is predicted to account for 10,000 of the cancer related deaths in 2014. As a highly mobile and aggressive form of cancer, melanoma is difficult to fight once it has metastasized through the body. Early detection in such varieties of cancer is critical in improving survival rates in afflicted patients. Present methods of detection rely on visual examination of suspicious regions …


Combined Metal-Enhanced Fluorescence-Surface Acoustic Wave (Mef-Saw) Biosensor, Samuel Morrill Mar 2014

Combined Metal-Enhanced Fluorescence-Surface Acoustic Wave (Mef-Saw) Biosensor, Samuel Morrill

USF Tampa Graduate Theses and Dissertations

Immunofluorescence assays are capable of both detecting the amount of a protein and the location of the protein within a cell or tissue section. Unfortunately, the traditional technique is not capable of detecting concentrations on the nanoscale. Also, the technique suffers from non-specific attachment, which can cause false-positives, as well as photobleaching when detecting lower concentrations is attempted. There is also a time constraint problem since the technique can take from many hours to a few days in some cases.

In this work, metal-enhanced fluorescence (MEF) is used to lower the detection limit and reduce photobleaching. Unfortunately, MEF also increases …


Surface Functionalization And Bioconjugation Of Nanoparticles For Biomedical Applications, Longyan Chen Jan 2014

Surface Functionalization And Bioconjugation Of Nanoparticles For Biomedical Applications, Longyan Chen

Electronic Thesis and Dissertation Repository

Colloidal inorganic nanoparticles (NPs) have been attracting considerable interest in biomedicine, from drug and gene delivery to imaging, sensing and diagnostics. It is essential to modify the surface of nanoparticles to have enhanced biocompatibility and functionality for the in vitro and in vivo applications, especially in delivering locally and recognizing biomolecules. Herein, the goal of this research work is to develop advanced NPs with well-tailored surface functionalities and/or bio-functionality for the applications in cell tracking and analytes detection.

In the first project, quantum dots incorporating with gelatin nanoparticles (QDs-GNPs) have been developed for bioimaging applications. Two different approaches have been …


Green Manufacturing Of Nanoparticles For Biomedical Applications, Sijia Yi Aug 2013

Green Manufacturing Of Nanoparticles For Biomedical Applications, Sijia Yi

Doctoral Dissertations

The vast majority of nanomaterials are chemically synthesized, a costly process, that is environmentally risky, and the produced nanoparticles are potentially toxic to patients. Nature-based nanomaterials, however, are proving to be much more biocompatible with lower environmental toxicity. Even though a variety of natural nanomaterials have been designed, fabrication technologies for the desired natural nanoparticles with reproducible quality, high productivity and low cost remain a challenge. My objective has been to establish strategies for the isolation, purification and characterization of nanoparticles using a production system based on green tea and fungus (Arthrobotrys oligospora) and also to develop new …


Polysaccharide-Based Nanocarriers For Improved Drug Delivery, Nan Zhang Aug 2013

Polysaccharide-Based Nanocarriers For Improved Drug Delivery, Nan Zhang

Dissertations - ALL

The field of drug delivery has provided a solution to the limited efficacy and high toxicity of many drugs. Nano-sized drug carriers are popular because their size allows for selective accumulation in the diseased area. Polysaccharides are non-toxic and biodegradable natural polymers that can serve as the basis for these nano-sized carriers. Polysialic acid (PSA) is such a polysaccharide with strong hydrophilicity that may reduce uptake by the reticuloendothelial system and prolong drug circulation. In this study, we developed PSA-based nanocarriers, specifically micelles and nanoparticles, for improved drug delivery with improved efficacy and minimized toxicity. PSA-based micelle systems were developed …


Development Of Vapor Deposited Silica Sol-Gel Particles For A Bioactive Materials System To Direct Osteoblast Behavior, Katherine Lynn Snyder Jan 2013

Development Of Vapor Deposited Silica Sol-Gel Particles For A Bioactive Materials System To Direct Osteoblast Behavior, Katherine Lynn Snyder

Dissertations, Master's Theses and Master's Reports - Open

Tissue engineering and regenerative medicine have emerged in an effort to generate replacement tissues capable of restoring native tissue structure and function, but because of the complexity of biologic system, this has proven to be much harder than originally anticipated. Silica based bioactive glasses are popular as biomaterials because of their ability to enhance osteogenesis and angiogenesis. Sol-gel processing methods are popular in generating these materials because it offers: 1) mild processing conditions; 2) easily controlled structure and composition; 3) the ability to incorporate biological molecules; and 4) inherent biocompatibility. The goal of this work was to develop a bioactive …


Techniques To Quantify The Size Of Protein Colloids In Amyloid Fiber Formation, Jonathan R. Anson, Chia-Hung Lu, Lingwen Cui, Xiaojing Yang, Shaohua Xu Jan 2013

Techniques To Quantify The Size Of Protein Colloids In Amyloid Fiber Formation, Jonathan R. Anson, Chia-Hung Lu, Lingwen Cui, Xiaojing Yang, Shaohua Xu

Biomedical Engineering and Sciences Faculty Publications

A new method for the analysis of protein colloidal diameter has been developed using three existing protein concentration quantification techniques, absorption at 280 nm, colloidal gold assay, and DC protein assay. Protein colloids are formed in the process of aggregation and are thought to be intermediates in protein self-assembly and formation of amyloid fiber. Deposition of the protein fibers in tissues leads to numerous human diseases including Alzheimer’s. Lysozyme was incubated at pH 2.0, 55°C, an environment conducive to amyloid fiber formation. The protein colloids present in the supernatant of the samples after centrifugation were studied over a time course …


Applications Of Antioxidant And Anti-Inflammatory Polymers To Inhibit Injury And Disease, David B. Cochran Jan 2013

Applications Of Antioxidant And Anti-Inflammatory Polymers To Inhibit Injury And Disease, David B. Cochran

Theses and Dissertations--Chemical and Materials Engineering

There is an undeniable link between oxidative stress, inflammation, and disease. Currently, approaches using antioxidant therapies have been largely unsuccessful due to poor delivery and bioavailability. Responding to these limitations, we have developed classes of polymer and delivery systems that can overcome the challenges of antioxidant and anti-inflammatory therapy. In our initial studies, nanoparticles of poly(trolox), a polymeric form of trolox, were surface-modified with antibodies. This modification allows for specific targeting to endothelial cells, affording controllable and localized protection against oxidative stress. We have shown these targeted nanoparticles bind, internalize, and provide protection against oxidative stress generation and cytotoxicity from …


Encapsulation And Controlled Release Of Rhu-Erythropoietin From Chitosan Biopolymer Nanoparticles, Cody Bulmer Apr 2012

Encapsulation And Controlled Release Of Rhu-Erythropoietin From Chitosan Biopolymer Nanoparticles, Cody Bulmer

Electronic Thesis and Dissertation Repository

The objective of this research project was to develop a drug delivery system for recombinant human erythropoietin (rHu-EPO), a glycoprotein hormone used in the treatment of renal anaemia and chemotherapy induced anaemia, using the biopolymer chitosan as the base component. Two types of chitosan nanoparticles were produced through ionotropic gelation using flush mixing with either tripolyphosphate (TPP) or carrageenan polymer. Chitosan-TPP and chitosan-carrageenan nanoparticles were generated under a variety of conditions to evaluate the effects of chitosan concentration, chitosan to anion mass ratio and solution pH on the nanoparticle characteristics of particle diameter, surface charge and particle size distribution. A …


Controlled Delivery Of Tgf-Ss1 From Plga Nanoparticles, Pratik K. Vaidya Jan 2012

Controlled Delivery Of Tgf-Ss1 From Plga Nanoparticles, Pratik K. Vaidya

ETD Archive

Abdominal aortic aneurysms (AAAs) typically manifest as localized wall weakening and dilation of the infrarenal aorta, which grows gradually, and ultimately leads to fatal rupture. It is caused due to overexpression of proteolytic enzymes (matrix metalloproteases or MMPs) resulting into disruption of tissue structure, especially elastic matrix, which cannot be regenerated by adult vascular cells. On account of post-operative complications associated with their surgical repair, there is a critical need for developing non-surgical strategies for slowing and even regressing AAA growth. Recent studies in our laboratory have demonstrated that 1 ng/mL of transforming growth factor-β1 (TGF-β1) enhances regenerative repair by …


Targeted Multistage Delivery Of Nanoparticles To The Bone Marrow, Aman Mann Aug 2011

Targeted Multistage Delivery Of Nanoparticles To The Bone Marrow, Aman Mann

Dissertations & Theses (Open Access)

Bone marrow is a target organ site involved in multiple diseases including myeloproliferative disorders and hematologic malignancies and metastases from breast and prostate. Most of these diseases are characterized with poor quality of life, and the treatment options are only palliative due to lack of delivery mechanisms for systemically injected drugs which results in dose limitation to protect the healthy hematopoietic cells. Therefore, there is a critical need to develop effective therapeutic strategies that allow for selective delivery of therapeutic payload to the bone marrow. Nanotechnology-based drug delivery systems provide the opportunity to deliver drugs to the target tissue while …


Structure And Optical Properties Of Self-Assembled Multicomponent Plasmonic Nanogels, Tao Cong, Satvik N. Wani, Peter Anthony Paynter, Radhakrishna Sureshkumar Jul 2011

Structure And Optical Properties Of Self-Assembled Multicomponent Plasmonic Nanogels, Tao Cong, Satvik N. Wani, Peter Anthony Paynter, Radhakrishna Sureshkumar

Biomedical and Chemical Engineering - All Scholarship

Multicomponent plasmonic nanogels (PNGs) capable of broadband absorption of light in the 400-700 nm wavelength range were synthesized by the self-assembly of metal nanoparticles with wormlike surfactant micelles. Small angle x-ray scattering and rheological experiments suggest that the nanoparticles bridge micelle fragments to aid the formation a stable gel phase with exceptional color uniformity. Their optical absorbance could be robustly tuned by changing the nanoparticle type (Au/Ag), size, shape, and/or concentration. The PNGs have relatively low viscosity and are thermoreversible. Potential applications to the manufacturing of coatings and interfaces for solar energy harvesting and reconfigurable optical devices can be envisioned.


Application Of Nanotechnology For Targeted Delivery Of Antibacterial Enzymes And For Enzyme-Based Coatings On Medical Devices And Implants, Rohan Satishkumar May 2011

Application Of Nanotechnology For Targeted Delivery Of Antibacterial Enzymes And For Enzyme-Based Coatings On Medical Devices And Implants, Rohan Satishkumar

All Dissertations

The frequency of S. aureus infection and subsequent biofilm formation associated with vascular catheterization has been increasing in recent years and often begins as a local colonization at the site of the catheter insertion. Antimicrobial enzymes and peptides, which are effective against a broad range of pathogens and low rates of resistance, have attracted attention as promising alternative candidates in treatment of infections caused by antibiotic resistant bacteria. The use of nanoparticles as carriers for enzymes, in addition to their size, charge, high surface area per volume etc. offers targeted delivery of enzymes to pathogenic bacteria. We proposed to use …


Functionalized Nanoparticles For Biological Imaging And Detection Applications, Bing C Mei Feb 2009

Functionalized Nanoparticles For Biological Imaging And Detection Applications, Bing C Mei

Doctoral Dissertations 1896 - February 2014

Semiconductor quantum dots (QDs) and gold nanoparticles (AuNPs) have gained tremendous attention in the last decade as a result of their size-dependent spectroscopic properties. These nanoparticles have been a subject of intense study to bridge the gap between macroscopic and atomic behavior, as well as to generate new materials for novel applications in therapeutics, biological sensing, light emitting devices, microelectronics, lasers, and solar cells. One of the most promising areas for the use of these nanoparticles is in biotechnology, where their size-dependent optical properties are harnessed for imaging and sensing applications. However, these nanoparticles, as synthesized, are often not stable …


Selective Deposition Of Metal Nanoparticles Inside Or Outside Multiwalled Carbon Nanotubes, Jean-Philippe Tessonnier, Ovidiu Ersen, Gisela Weinberg, Cuong Pham-Huu, Dang Sheng Su, Robert Schlogl Jan 2009

Selective Deposition Of Metal Nanoparticles Inside Or Outside Multiwalled Carbon Nanotubes, Jean-Philippe Tessonnier, Ovidiu Ersen, Gisela Weinberg, Cuong Pham-Huu, Dang Sheng Su, Robert Schlogl

Jean-Philippe Tessonnier

A general method is described for the deposition of metal nanoparticles selectively either inside or outside of carbon nanotubes (CNTs). The method is based on the difference in the interface energies of organic and aqueous solutions with the CNT surface. Because of their lipophilic character, the organic solvent better wets the surface of the nanotubes compared to water and penetrates into the inner volume. The precise control of the volume of each phase allows filling the CNT with the organic phase and covering its outer surface with the aqueous one. Hence, metal nanoparticles can be put with high selectivity either …