Open Access. Powered by Scholars. Published by Universities.®

Biomedical Engineering and Bioengineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Biomedical Engineering and Bioengineering

Tumor Targeting Gold Nanoparticles For Delivery Of Rna And Dna Oligonucleotide Therapies For Glioblastoma., Nicholas Allen May 2023

Tumor Targeting Gold Nanoparticles For Delivery Of Rna And Dna Oligonucleotide Therapies For Glioblastoma., Nicholas Allen

Electronic Theses and Dissertations

Glioblastoma (GBM) brain tumors are highly aggressive gliomas due to genetic and cellular heterogeneity. Current GBM treatment consists of surgical resection of the tumor combined with radio- or chemo-therapies. While these treatments have increased the life expectancy for GBM patients up to 20 months, they have had little effect on the 5-year survival rate. The complex cellular and genetic composition of the tumor makes current treatments less effective long term. One approach to developing more effective GBM treatments is to customize nanoparticle-based drug delivery systems that can directly target the aberrant gene expression patterns within a particular GBM tumor. Delivery …


The Wound Healing And Antibacterial Properties Of Mesenchymal Stromal Cell Extracellular Matrix Nanoparticles, Emily N. Wandling Jan 2023

The Wound Healing And Antibacterial Properties Of Mesenchymal Stromal Cell Extracellular Matrix Nanoparticles, Emily N. Wandling

Theses and Dissertations

Treatments for acute respiratory distress syndrome (ARDS) are still unavailable and the prevalence of the disease has only increased due to the Covid-19 pandemic. Mechanical ventilation regiments are still utilized to support declining lung function, but they also contribute to lung damage and increase the risk of bacterial infection. The anti-inflammatory and pro-regenerative abilities of mesenchymal stromal cells (MSCs) have shown to be a promising therapy for ARDS. We propose to utilize the regenerative effects of MSC secretome and the extracellular matrix (ECM) into a nanoparticle. Our mouse MSC (MMSC) ECM nanoparticles were characterized using size, zeta-potential, and mass spectrometry …


Plga-Modified Nanoparticles For The Treatment Of Hypo-Vascularized Hpv-Related Cervical Cancers., Lee B. Sims May 2018

Plga-Modified Nanoparticles For The Treatment Of Hypo-Vascularized Hpv-Related Cervical Cancers., Lee B. Sims

Electronic Theses and Dissertations

A major challenge associated with delivery of active agents in the female reproductive tract (FRT) is the ability of agents to efficiently diffuse through the cervicovaginal mucosa (CVM) and reach the underlying sub-epithelial immune cell layer and vasculature. A variety of drug delivery vehicles have been employed to improve the delivery of agents across the CVM and offer the capability to increase the longevity and retention of active agents to treat infections of the female reproductive tract. Nanoparticles (NPs) have been shown to improve retention, diffusion, and cell-specific targeting via specific surface modifications, relative to other delivery platforms. In particular, …


The Effect Of Hyperthermia On Doxorubicin Therapy And Nanoparticle Penetration In Multicellular Ovarian Cancer Spheroids, Abhignyan Nagesetti Feb 2017

The Effect Of Hyperthermia On Doxorubicin Therapy And Nanoparticle Penetration In Multicellular Ovarian Cancer Spheroids, Abhignyan Nagesetti

FIU Electronic Theses and Dissertations

The efficient treatment of cancer with chemotherapy is challenged by the limited penetration of drugs into the tumor. Nanoparticles (10 – 100 nanometers) have emerged as a logical choice to specifically deliver chemotherapeutics to tumors, however, their transport into the tumor is also impeded owing to their bigger size compared to free drug moieties. Currently, monolayer cell cultures, as models for drug testing, cannot recapitulate the structural and functional complexity of in-vivo tumors. Furthermore, strategies to improve drug distribution in tumor tissues are also required. In this study, we hypothesized that hyperthermia (43°C) will improve the distribution of silica nanoparticles …


Thermosensitive Gel Containing Cellulose Acetate Phthalate-Efavirenz Combination Nanoparticles For Prevention Of Hiv-1 Infection, Abhijit A. Date, Annemarie Shibata, Emily Mcmullen, Krista La Bruzzo, Patrick Bruck, Michael Belshan, You Zhou, Christopher J. Destache Jan 2015

Thermosensitive Gel Containing Cellulose Acetate Phthalate-Efavirenz Combination Nanoparticles For Prevention Of Hiv-1 Infection, Abhijit A. Date, Annemarie Shibata, Emily Mcmullen, Krista La Bruzzo, Patrick Bruck, Michael Belshan, You Zhou, Christopher J. Destache

Nebraska Center for Biotechnology: Faculty and Staff Publications

The objective of this investigation was to develop and evaluate a nano-microbicide containing a combination of cellulose acetate phthalate (HIV-1 entry inhibitor) and efavirenz (anti-HIV agent) for HIV prophylaxis. Cellulose acetate phthalate-efavirenz combination nanoparticles (CAP-EFV-NPs) were fabricated by the nanoprecipitation method and were characterized for particle size, zeta potential and encapsulation efficiency of efavirenz. CAP-EFV-NPs were incorporated into a thermosensitive gel (CAP-EFV-NP-Gel). CAP-EFV-NPs, CAP-EFV-NP-Gel and efavirenz solution were evaluated for cytotoxicity to HeLa cells and for in vitro short-term (1-day) and long-term (3-day) prophylaxis against HIV-1 infection in TZM-bl cells. CAP-EFV-NPs had size < 100 nm, negative surface charge and encapsulation efficiency of efavirenz was > 98%. CAP-EFV-NPs and CAP-EFV-NP-Gel were significantly less …