Open Access. Powered by Scholars. Published by Universities.®

Biomedical Engineering and Bioengineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Imaging

Theses/Dissertations

Discipline
Institution
Publication Year
Publication

Articles 1 - 26 of 26

Full-Text Articles in Biomedical Engineering and Bioengineering

Injectable Ct/Mri Contrast Agent For Gastrointestinal Tumor Tracking, Luna Zhang May 2021

Injectable Ct/Mri Contrast Agent For Gastrointestinal Tumor Tracking, Luna Zhang

McKelvey School of Engineering Theses & Dissertations

Gastrointestinal cancers remain to be of the most common and deadly cancers worldwide. Early detection and treatments are crucial for reducing mortality and improving patient outcome. Radiation therapy is a non-invasive localized tumor treatment method, and utilizes radiation to kill the cancerous cells and shrink tumors at specific sites. Precise localization at the target tumor site is therefore important before radiation therapy, especially for gastrointestinal tumor sites located in the moving bowel. Currently, invasive endoscopies along with ink tattoos are used for identifying tumor location, which often require sedation and bring much discomfort. Imaging tests, including CT and MRI, play …


Quantifying Blood Flow Patterns In The Pediatric Heart Using Blood Speckle Imaging, Harrison Dean May 2021

Quantifying Blood Flow Patterns In The Pediatric Heart Using Blood Speckle Imaging, Harrison Dean

Biomedical Engineering Undergraduate Honors Theses

Congenital Heart Disease (CHD) is the most common type of congenital disease worldwide. Echocardiography using Doppler ultrasound is typically used to diagnose and monitor CHD; however, it is angle-dependent in nature and as a result is limited in its ability to accurately evaluate ventricular function. Blood Speckle Imaging (BSI) is a novel, angle-independent imaging modality that provides detailed blood flow information and visualization within a given area using speckle-tracking. In this study, velocity-field information obtained from BSI was used to calculate flow parameters such as kinetic energy (KE) and circulation using a custom created MATLAB program. BSI was performed on …


Development Of High-Speed Photoacoustic Imaging Technology And Its Applications In Biomedical Research, Yun He Dec 2019

Development Of High-Speed Photoacoustic Imaging Technology And Its Applications In Biomedical Research, Yun He

McKelvey School of Engineering Theses & Dissertations

Photoacoustic (PA) tomography (PAT) is a novel imaging modality that combines the fine lateral resolution from optical imaging and the deep penetration from ultrasonic imaging, and provides rich optical-absorption–based images. PAT has been widely used in extracting structural and functional information from both ex vivo tissue samples to in vivo animals and humans with different length scales by imaging various endogenous and exogenous contrasts at the ultraviolet to infrared spectrum. For example, hemoglobin in red blood cells is of particular interest in PAT since it is one of the dominant absorbers in tissue at the visible wavelength.The main focus of …


In Vivo Metabolic And Vascular Response To Hypoxia In Twist Knockdown Murine Breast Cancer, Brandon Sturgill Dec 2019

In Vivo Metabolic And Vascular Response To Hypoxia In Twist Knockdown Murine Breast Cancer, Brandon Sturgill

Graduate Theses and Dissertations

Twist transcription factor is often overexpressed in aggressive tumors. Although needed in early embryonic development for organogenesis, Twist is known to induce an epithelial to mesenchymal transition in cells. In cancer, epithelial to mesenchymal transitions can lead to increased motility and invasiveness. It has also been linked to metabolic reprogramming and increased metastatic risk. Furthermore, metabolic preferences can increase proliferation, enhance metastatic potential, and influence the site of metastasis. We hypothesize that Twist directly affects the metabolism of cancer cells. We expect to see in vivo what we have seen in vitro; Twist overexpression should promote a shift away from …


Vector Flow Imaging In Pediatric Cardiology - Extracting And Validating Data, Mason Belue May 2019

Vector Flow Imaging In Pediatric Cardiology - Extracting And Validating Data, Mason Belue

Biomedical Engineering Undergraduate Honors Theses

In the field of bedside cardiac diagnostic imaging, Doppler Ultrasound (DU) is the gold standard for diagnosing heart conditions. The largest benefit of DU is its ability to noninvasively image cardiac flow and allow the estimation of blood velocity and quantification of anatomical disease. However, to get correct velocity estimation, the position of the transducer in relation to the flow field needs to be known. This is the problem of angle/direction dependency and limits DUs accuracy when imaging in areas where perfect alignment or exact position of the transducer in relation to flow field is not possible or known, such …


Modeling And Validation Of Tissue Optical Properties In The Photon Transport Regime, Katelyn Heath May 2019

Modeling And Validation Of Tissue Optical Properties In The Photon Transport Regime, Katelyn Heath

Biomedical Engineering Undergraduate Honors Theses

Early detection of changes in epithelial cells, such as the development of neoplastic formations seen in epithelial dysplasia, can indicate regions of the epithelial tissue that are at a high risk for cancerous formation. Using concepts from diffuse reflectance spectroscopy, a Monte Carlo model was developed to predict the reflectance measured by a detector at a small source-detector separation on a microendoscope. The Monte Carlo results were then used to calculate a mathematical relationship between the reflectance and distance that can be used to determine optical properties in a tissue sample. This model was validated with liquid phantoms of specified …


Optical Vortex And Poincaré Analysis For Biophysical Dynamics, Anindya Majumdar Jan 2019

Optical Vortex And Poincaré Analysis For Biophysical Dynamics, Anindya Majumdar

Dissertations, Master's Theses and Master's Reports

Coherent light - such as that from a laser - on interaction with biological tissues, undergoes scattering. This scattered light undergoes interference and the resultant field has randomly added phases and amplitudes. This random interference pattern is known as speckles, and has been the subject of multiple applications, including imaging techniques. These speckle fields inherently contain optical vortices, or phase singularities. These are locations where the intensity (or amplitude) of the interference pattern is zero, and the phase is undefined.

In the research presented in this dissertation, dynamic speckle patterns were obtained through computer simulations as well as laboratory setups …


Fluorescence Guided Tumor Imaging: Foundations For Translational Applications, Jessica P. Miller May 2018

Fluorescence Guided Tumor Imaging: Foundations For Translational Applications, Jessica P. Miller

McKelvey School of Engineering Theses & Dissertations

Optical imaging for medical applications is a growing field, and it has the potential to improve medical outcomes through its increased sensitivity and specificity, lower cost, and small instrumentation footprint as compared to other imaging modalities. The method holds great promise, ranging from direct clinical use as a diagnostic or therapeutic tool, to pre-clinical applications for increased understanding of pathology. Additionally, optical imaging uses non-ionizing radiation which is safe for patients, so it can be used for repeated imaging procedures to monitor therapy, guide treatment, and provide real-time feedback. The versatile features of fluorescence-based optical imaging make it suited for …


Development Of Low Frequency Electron Paramagnetic Resonance Methods And Instrumentation For Biological Applications, Laura A. Buchanan Jan 2018

Development Of Low Frequency Electron Paramagnetic Resonance Methods And Instrumentation For Biological Applications, Laura A. Buchanan

Electronic Theses and Dissertations

EPR is a powerful biophysical tool that can be used to measure tumor physiology. With the addition of magnetic field gradients, the spectral properties of paramagnetic species can be mapped. To facilitate EPR imaging, methods and instrumentation at frequencies between 250 MHz and 1 GHz were developed.

At low spin concentrations, the rapid scan background signal is often many times larger than the EPR signal of interest. To help remove the background contribution, a data acquisition procedure that takes advantage of a cross-loop resonator and bipolar power supplies was developed at 250 MHz. In this procedure, two scans are collected. …


Experimental And Model-Based Terahertz Imaging And Spectroscopy For Mice, Human, And Phantom Breast Cancer Tissues, Tyler Bowman Jan 2018

Experimental And Model-Based Terahertz Imaging And Spectroscopy For Mice, Human, And Phantom Breast Cancer Tissues, Tyler Bowman

Graduate Theses and Dissertations

The goal of this work is to investigate terahertz technology for assessing the surgical margins of breast tumors through electromagnetic modeling and terahertz experiments. The measurements were conducted using a pulsed terahertz system that provides time and frequency domain signals. Three types of breast tissues were investigated in this work. The first was formalin-fixed, paraffin-embedded tissues from human infiltrating ductal and lobular carcinomas. The second was human tumors excised within 24-hours of lumpectomy or mastectomy surgeries. The third was xenograft and transgenic mice breast cancer tumors grown in a controlled laboratory environment to achieve more data for statistical analysis.

Experimental …


Developing An Imaging Biomarker To Detect Aberrant Brain Connectivity In Individual Patients, Esther Cox Apr 2017

Developing An Imaging Biomarker To Detect Aberrant Brain Connectivity In Individual Patients, Esther Cox

Master's Theses (2009 -)

Resting state functional MRI (rsfMRI) has been proven to be a valuable tool in clinical applications such as pre-surgical mapping, but there is not yet a functional and usable algorithm that can be used by physicians in a clinical setting to evaluate an individual patient for diseases and aberrant brain connectivity. If a physician wants to evaluate a patient in this way, the rsfMRI data must be looked at “by hand,” i.e. the physician must manually evaluate the data and identify the functional ICN’s and whether they are normal or aberrant. An algorithm that would automate this process and supplement …


A Structural And Functional Analysis Of Human Brain Mri With Attention Deficit Hyperactivity Disorder, Arjun A. Watane Jan 2017

A Structural And Functional Analysis Of Human Brain Mri With Attention Deficit Hyperactivity Disorder, Arjun A. Watane

Honors Undergraduate Theses

Attention Deficit Hyperactivity Disorder (ADHD) affects 5-10% of children worldwide. Its effects are mainly behavioral, manifesting in symptoms such as inattention, hyperactivity, and impulsivity. If not monitored and treated, ADHD may adversely affect a child's health, education, and social life. Furthermore, the neurological disorder is currently diagnosed through interviews and opinions of teachers, parents, and physicians. Because this is a subjective method of identifying ADHD, it is easily prone to error and misdiagnosis. Therefore, there is a clear need to develop an objective diagnostic method for ADHD.

The focus of this study is to explore the use of machine language …


Machine Learning Methods For Medical And Biological Image Computing, Rongjian Li Jul 2016

Machine Learning Methods For Medical And Biological Image Computing, Rongjian Li

Computer Science Theses & Dissertations

Medical and biological imaging technologies provide valuable visualization information of structure and function for an organ from the level of individual molecules to the whole object. Brain is the most complex organ in body, and it increasingly attracts intense research attentions with the rapid development of medical and bio-logical imaging technologies. A massive amount of high-dimensional brain imaging data being generated makes the design of computational methods for efficient analysis on those images highly demanded. The current study of computational methods using hand-crafted features does not scale with the increasing number of brain images, hindering the pace of scientific discoveries …


Increasing 18f-Fdg Pet/Ct Capabilities In Radiotherapy For Lung And Esophageal Cancer Via Image Feature Analysis, Jasmine Alexandria Oliver Mar 2016

Increasing 18f-Fdg Pet/Ct Capabilities In Radiotherapy For Lung And Esophageal Cancer Via Image Feature Analysis, Jasmine Alexandria Oliver

USF Tampa Graduate Theses and Dissertations

Positron Emission Tomography (PET) is an imaging modality that has become increasingly beneficial in Radiotherapy by improving treatment planning (1). PET reveals tumor volumes that are not well visualized on computed tomography CT or MRI, recognizes metastatic disease, and assesses radiotherapy treatment (1). It also reveals areas of the tumor that are more radiosensitive allowing for dose painting - a non-homogenous dose treatment across the tumor (1). However, PET is not without limitations. The quantitative unit of PET images, the Standardized Uptake Value (SUV), is affected by many factors such as reconstruction algorithm, patient weight, and tracer uptake time (2). …


Europium(Ii)-Containing Complexes For Responsive Magnetic Resonance Imaging, Levi Alexander Ekanger Jan 2016

Europium(Ii)-Containing Complexes For Responsive Magnetic Resonance Imaging, Levi Alexander Ekanger

Wayne State University Dissertations

The research projects described in this dissertation are focused on studying the oxidation of EuII-containing complexes within the context of responsive MRI. Prior to this research, EuII had not been explored within the context of oxidation-responsive MRI nor had the use of this ion been reported in vivo. The results of these studies enable predictions about the oxidation-responsive behavior of EuII-containing complexes in vitro and in vivo.

The EuII-containing cryptate 1.33 was used to evaluate EuII-based positive contrast enhancement after intravenous, intraperitoneal, and subcutaneous injections. The transitory behavior of the positive contrast enhancement correlated with reported levels of oxygenation and …


Characterization Of Low Density Intracranial Lesions Using Dual-Energy Computed Tomography, Jessica L. Nute May 2015

Characterization Of Low Density Intracranial Lesions Using Dual-Energy Computed Tomography, Jessica L. Nute

Dissertations & Theses (Open Access)

Calcific and hemorrhagic foci of susceptibility are frequently encountered on routine brain MR studies. Both etiologies cause variations in local magnetic field strength, leading to dark regions on the MR images that cannot be classified. Single-energy CT (SECT) can be used to identify lesions with attenuation over 100 HU as calcific, however lesions with lower attenuation cannot be reliably identified. While calcific lesions are unlikely to cause harm, hemorrhagic lesions carry a risk of subsequent intracranial bleeding; as such, identification of hemorrhage is vital in preventing the inappropriate use of anticoagulant medications in patients with hemorrhagic lesions.

Given there currently …


Molecular Sensing And Imaging Of Human Disease Cells And Their Responses To Biochemical Stimuli, Lifu Xiao May 2015

Molecular Sensing And Imaging Of Human Disease Cells And Their Responses To Biochemical Stimuli, Lifu Xiao

All Graduate Theses and Dissertations, Spring 1920 to Summer 2023

Advancement in microscopic and spectroscopic techniques could significantly improve our ability in the study and diagnosis of diseases. Especially, being able to image and detect human diseases at the cellular and molecular level allows people to diagnose diseases at early stages and to study the molecular mechanisms behind various diseases. Currently, histopathological techniques are most widely used for prognosis and diagnosis of human diseases. However, conventional histopathology requires a complex process of sample preparation, which limits the diagnostic efficiency of this technique. More importantly, it requires fixation of tissue or cell sample, making it unsuitable for the study of dynamic …


Integration Of Instrumentation And Processing Software Of A Laser Speckle Contrast Imaging System, Jacob James Carrick Jan 2014

Integration Of Instrumentation And Processing Software Of A Laser Speckle Contrast Imaging System, Jacob James Carrick

Dissertations, Master's Theses and Master's Reports - Open

Laser speckle contrast imaging (LSCI) has the potential to be a powerful tool in medicine, but more research in the field is required so it can be used properly. To help in the progression of Michigan Tech's research in the field, a graphical user interface (GUI) was designed in Matlab to control the instrumentation of the experiments as well as process the raw speckle images into contrast images while they are being acquired. The design of the system was successful and is currently being used by Michigan Tech's Biomedical Engineering department. This thesis describes the development of the LSCI GUI …


Automated Point-Of-Care Image Processing Methodology For The Diagnosis Of Malaria, Michael B. Jorgensen Jan 2013

Automated Point-Of-Care Image Processing Methodology For The Diagnosis Of Malaria, Michael B. Jorgensen

Master's Theses

Malaria has profoundly influenced human history for over four thousand years and despite numerous attempts at eradication, the prevention, diagnosis, and treatment of malaria have been largely ineffective. More than five hundred million people are affected by malaria every year resulting in over one million deaths. Drug resistance development by the parasite has diminished the effectiveness of numerous treatment options due, in part, to overtreatment of negative patients based on insufficient clinical algorithms and diagnostic methods. The goal of this research was to develop an image analysis algorithm to diagnose malaria with a high degree of sensitivity and specificity in …


A Novel Method For Determining Acetabular Orientation, Sean Higgins Aug 2012

A Novel Method For Determining Acetabular Orientation, Sean Higgins

Theses and Dissertations

Enhanced knowledge of the acetabulum is of paramount importance in the diagnostic, planning, and execution stages of procedures and treatments targeting the hip joint. The convoluted and highly variable morphology of the structures comprising the bony pelvis make ascertaining measures of the acetabulum challenging. Furthermore, current methods for determining acetabular orientation assume symmetry between the separate halves of the pelvis by utilizing a coordinate system based on bilateral landmarks. The purpose of this study was to determine the three-dimensional orientation of the entire acetabulum. For this research, an improved programmatic method was developed for determining acetabular orientation using three-dimensional data. …


Coupling Of Audio Signals Into Afm Images, Matthew Manning Jun 2012

Coupling Of Audio Signals Into Afm Images, Matthew Manning

Honors Theses

It is well known that Atomic Force Microscopy imaging is capable of yielding high resolution results with of surfaces at the nanoscale. However, despite the device capabilities and vast applications, AFM microscopy is possibly the most prone to the creation of image artifacts. AFM imaging can easily, and is often, corrupted by various external forces. The most obvious and measurable form of external interference is of course the presence of ambient noise. Most AFM manufactures attempt to counter the effects of such noise on the imaging process through use of noise-proof or noise-resistant shields that cover the microscope aperture. Without …


Quantitative, Spatial Imaging Based Measurements To Assess Cellular Health And Oxygenation In A Tissue Engineered Test System, Erik Bland May 2012

Quantitative, Spatial Imaging Based Measurements To Assess Cellular Health And Oxygenation In A Tissue Engineered Test System, Erik Bland

All Dissertations

Three-dimensional in vitro tissue test systems are employed to examine cell behavior, test responses to drugs and vaccines, and answer basic biological questions. These systems are more physiologically relevant than two-dimensional cell cultures, and are more relevant, easier and less expensive to maintain than animal models. However, methods used to measure cell behavior and viability have been developed specifically for two-dimensional cell cultures or animal models, and are often not optimally translated to three-dimensional in vitro test systems. The purpose of this work was to aid in the development of three-dimensional, spatially controlled in vitro test systems, and to develop …


Tools For Creating Wide-Field Views Of The Human Retina Using Optical Coherence Tomography, Ashavini M. Pavaskar Jul 2011

Tools For Creating Wide-Field Views Of The Human Retina Using Optical Coherence Tomography, Ashavini M. Pavaskar

Master's Theses (2009 -)

Optical Coherence Tomography (OCT) has allowed in-vivo viewing of details of retinal layers like never before. With the development of spectral domain OCT (SD-OCT) details of nearly 2µm axial resolution and higher imaging speed have been reported. Nevertheless, a single volume scan of the retina is typically restricted to 6mm x 6mm in size. Having a larger field of view of the retina will definitely enhance the clinical utility of the OCT.

A tool was developed for creating wide-field thickness maps of the retina by combining the use of already available tools like i2k Retina (DualAlign, LLC, Clifton Park, NY) …


Characterization And Analysis Techniques Of A Dynamic In Vitro Blood-Brain Barrier Model, Ryan Everett Woodhouse Dec 2010

Characterization And Analysis Techniques Of A Dynamic In Vitro Blood-Brain Barrier Model, Ryan Everett Woodhouse

Biomedical Engineering

The blood-brain barrier (BBB) is responsible for maintaining the sensitive environment required by the brain. Although the BBB is necessary for proper functioning of the brain, it acts as an obstacle for doctors attempting to treat neurological disease. For a drug to act upon the brain, it must first pass through the discriminating BBB. For this reason, much research has been performed in recent years in order to create an in vitro model of the BBB on which drugs targeted for the central nervous system may be tested. The main goal of this project is to create an in vitro …


Finding Cadaveric Human Head Masses And Center Of Gravity: A Comparison Of Direct Measurement To 3d Ing, Grant Corwin Roush Jan 2010

Finding Cadaveric Human Head Masses And Center Of Gravity: A Comparison Of Direct Measurement To 3d Ing, Grant Corwin Roush

Browse all Theses and Dissertations

Mass properties of the human head are critical elements in developing neck injury threshold criteria in acceleration and impact environments. In order to accurately simulate the dynamics of the head in impact and acceleration environments, valid mass properties data for the human head must exist.

The purpose of this study was two-fold: First, to directly measure and generate a useful data set of human head mass properties and anthropometry, and second, compare the results from the direct measurement to measurements obtained using computed tomographic (CT) analyses of the human head. Four cadaveric human heads, all male, were measured.

For the …


Improving Pediatric Cardiology Consultation Methods By Introducing Digital Interactive 3-D Heart Models: A Proof Of Concept Study, Adam Verigan Jul 2007

Improving Pediatric Cardiology Consultation Methods By Introducing Digital Interactive 3-D Heart Models: A Proof Of Concept Study, Adam Verigan

USF Tampa Graduate Theses and Dissertations

The purpose of a pediatric cardiology consultation is to inform, or educate, the patient and family of all aspects surrounding a certain congenital heart defect. Consultation education methods and materials may include verbal descriptions, two-dimensional (2-D) heart diagrams, and take-home pamphlets. Because the human heart is a complex three-dimensional (3-D) object, the problem lies within the clarity to which these methods are performed by the doctors and understood by the patients and families. Therefore, during a consultation the cardiologist must a) possess the ability to describe a defect visually as well as verbally and b) ensure that the patient and …