Open Access. Powered by Scholars. Published by Universities.®

Biomedical Engineering and Bioengineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Biomedical Engineering and Bioengineering

Promotion Of Human Schwann Cell Proliferation Using Heparin/Collagen Coated Nerve Conduits, John Magness May 2021

Promotion Of Human Schwann Cell Proliferation Using Heparin/Collagen Coated Nerve Conduits, John Magness

Chemical Engineering Undergraduate Honors Theses

Often in the aftermath of an injury or surgery, the sense of touch and muscle control is lost in the affected area as nerves are damaged or severed and fail to grow back completely. The regeneration of the nerve cells can be promoted by treating the nerves with nerve conduits. Nerve conduits are hollow cylinders of bio-compatible materials that can be surgically implanted to the disconnected nerve to promote and direct the growth of nerves. The objectives of this research are to investigate the ability of nerve conduits treated with layer-by-layer coatings to promote the growth of Schwann cells, to …


Electrospun Polycaprolactone Nanofiber Scaffolds For Tissue Engineering, Andreas Haukas May 2012

Electrospun Polycaprolactone Nanofiber Scaffolds For Tissue Engineering, Andreas Haukas

Graduate Theses and Dissertations

Stem cell and tissue engineering offer us with a unique opportunity to research and develop new therapies for treating various diseases that are otherwise incurable using traditional medicines. However, development of these new therapies replies upon the establishment of in vitro cell culture and differentiation systems that mimic in vivo microenvironments required for cell-cell and cell-ECM interaction. The development of these cell culture systems depends upon the identification of appropriate biomaterials and cell sources. Biomaterials should be carefully selected and fabricated into scaffolds for supporting cell growth and differentiation. In this study, we explored the fabrication of 3D electrospun nanofiber …


Electrospun Scaffolds For Directed Pancreatic Differentiation Of Human Ips Cells, Karl Sonntag May 2010

Electrospun Scaffolds For Directed Pancreatic Differentiation Of Human Ips Cells, Karl Sonntag

Biological and Agricultural Engineering Undergraduate Honors Theses

In this work, an electrospinning device for fabricating three-dimensional scaffolds was constructed. The device can be used to produce tissue engineered scaffolds electrospun for directing the differentiation of human induced pluripotent stem (iPS) cells into glucose-responsive, insulin-secreting cells for diabetes treatment. Electrospinning utilizes high electrical charge to generate nanofibers from polymers dissolved in solution. A standard setup for such a device includes a high-voltage power source, a syringe pump, and a grounded collector. The process works by dissolving the polymer in a volatile solvent, and filling a syringe with the polymer/solvent mixture. Next, the syringe is locked into place in …