Open Access. Powered by Scholars. Published by Universities.®

Biomedical Engineering and Bioengineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Biomedical Engineering and Bioengineering

Effect Of Applied Uniaxial Stress On Rate And Mechanical Effects Of Cross-Linking In Tissue-Derived Biomaterials, Debbie Chachra, Paul Gratzer, Christopher Pereira, J. Lee Jul 2012

Effect Of Applied Uniaxial Stress On Rate And Mechanical Effects Of Cross-Linking In Tissue-Derived Biomaterials, Debbie Chachra, Paul Gratzer, Christopher Pereira, J. Lee

Debbie Chachra

Conformational changes in collagen fibrils, and indeed the triple helix, can be produced by application of mechanical stress or strain. We have demonstrated that the rate of cross-linking in glutaraldehyde and epoxide homobifunctional reagents can be modulated by uniaxial stress (strain). Two poly(glycidyl ether) epoxides were used: Denacol® EX-810 (a small bifunctional reagent), and Denacol EX-512 (a large polyfunctional reagent). To prevent any possible effect from being masked by saturation of cross-linking sites, bovine pericardium was cross-linked to such an extent that the increase in collagen denaturation temperature, Td, was one-half of the maximal rise achievable with …


Second-Harmonic Imaging Microscopy Of Living Cells, Paul J. Campagnola, Heather Clark, William A. Mohler, Aaron Lewis (Prof.), Leslie M. Loew Nov 2010

Second-Harmonic Imaging Microscopy Of Living Cells, Paul J. Campagnola, Heather Clark, William A. Mohler, Aaron Lewis (Prof.), Leslie M. Loew

Heather Clark

Second harmonic generation (SHG) has been developed in our laboratories as a high-resolution nonlinear optical imaging microscopy for cellular membranes and intact tissues. SHG shares many of the advantageous features for microscopy of another more established nonlinear optical technique: two-photon excited fluorescence (TPEF). Both are capable of optical sectioning to produce threedimensional images of thick specimens and both result in less photodamage to living tissue than confocal microscopy. SHG is complementary to TPEF in that it uses a different contrast mechanism and is most easily detected in the transmitted light optical path. It can be used to image membrane probes …