Open Access. Powered by Scholars. Published by Universities.®

Biomedical Engineering and Bioengineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 17 of 17

Full-Text Articles in Biomedical Engineering and Bioengineering

Person Identification From Streaming Surveillance Video Using Mid-Level Features From Joint Action-Pose Distribution, Binu M. Nair, Vijayan K. Asari Oct 2016

Person Identification From Streaming Surveillance Video Using Mid-Level Features From Joint Action-Pose Distribution, Binu M. Nair, Vijayan K. Asari

Vijayan K. Asari

We propose a real time person identification algorithm for surveillance based scenarios from low-resolution streaming video, based on mid-level features extracted from the joint distribution of various types of human actions and human poses. The proposed algorithm uses the combination of an auto-encoder based action association framework which produces per-frame probability estimates of the action being performed, and a pose recognition framework which gives per-frame body part locations. The main focus in this manuscript is to effectively combine these per-frame action probability estimates and pose trajectories from a short temporal window to obtain mid-level features. We demonstrate that these mid-level …


Video-To-Video Pose And Expression Invariant Face Recognition Using Volumetric Directional Pattern, Vijayan K. Asari, Almabrok Essa Oct 2016

Video-To-Video Pose And Expression Invariant Face Recognition Using Volumetric Directional Pattern, Vijayan K. Asari, Almabrok Essa

Vijayan K. Asari

Face recognition in video has attracted attention as a cryptic method of human identification in surveillance systems. In this paper, we propose an end-to-end video face recognition system, addressing a difficult problem of identifying human faces in video due to the presence of large variations in facial pose and expression, and poor video resolution. The proposed descriptor, named Volumetric Directional Pattern (VDP), is an oriented and multi-scale volumetric descriptor that is able to extract and fuse the information of multi frames, temporal (dynamic) information, and multiple poses and expressions of faces in input video to produce feature vectors, which are …


Gaussian Nonlinear Line Attractor For Learning Multidimensional Data, Theus H. Aspiras, Vijayan K. Asari, Wesam Sakla Oct 2016

Gaussian Nonlinear Line Attractor For Learning Multidimensional Data, Theus H. Aspiras, Vijayan K. Asari, Wesam Sakla

Vijayan K. Asari

The human brain’s ability to extract information from multidimensional data modeled by the Nonlinear Line Attractor (NLA), where nodes are connected by polynomial weight sets. Neuron connections in this architecture assumes complete connectivity with all other neurons, thus creating a huge web of connections. We envision that each neuron should be connected to a group of surrounding neurons with weighted connection strengths that reduces with proximity to the neuron. To develop the weighted NLA architecture, we use a Gaussian weighting strategy to model the proximity, which will also reduce the computation times significantly. Once all data has been trained in …


Industrial Solid-State Energy Harvesting: Mechanisms And Examples, Matthew Kocoloski, Carl Eger, Robin Mccarty, Kevin P. Hallinan, J. Kelly Kissock Sep 2016

Industrial Solid-State Energy Harvesting: Mechanisms And Examples, Matthew Kocoloski, Carl Eger, Robin Mccarty, Kevin P. Hallinan, J. Kelly Kissock

J. Kissock

This paper explores the potential for solid-state energy harvesting in industrial applications. In contrast to traditional heat recovery, the output of solid-state devices is electricity, which can be readily used in virtually any plant. The progress in harvesting waste heat via thermoelectric and thermionic generators is described. With second law efficiencies now approaching 50% and 80% respectively, we show that these technologies are on the cusp of practical use. Finally, we present an example of energy harvesting using thermionic devices in an industrial application. The example considers energy harvesting from a furnace at a glass manufacturing facility where exhaust gases …


Attenuating The Feedback Pressure Of A Light-Activated Hearing Device To Allow Microphone Placement At The Ear Canal Entrance, Morteza Khaleghi, Sunil Puria Aug 2016

Attenuating The Feedback Pressure Of A Light-Activated Hearing Device To Allow Microphone Placement At The Ear Canal Entrance, Morteza Khaleghi, Sunil Puria

Morteza Khaleghi

The Earlens Contact Hearing Device (CHD) is a non-surgical hearing device consisting of three components:
Tympanic Lens (Lens), which is a light-activated balanced-armature transducer that drives the middle ear through direct contact with the umbo. Light Tip that shines pulses of light into the ear canal to wirelessly drive and power the Lens. Behind-the-ear unit (BTE) that receives incoming sound and outputs an encoded and amplified signal to drive the Light Tip.
Goals of this work are to characterize the ear-canal feedback pressure (ECFP) due to umbo-drive forces; characterize the gain margin (i.e., the MSG) and equivalent pressure output (EPO) …


Energy Information Augmented Community-Based Energy Reduction, Kevin P. Hallinan, Harvey Enns, Stephenie Ritchey, Phil Brodrick, Nathan Lammers, Nichole Hanus, Mark Rembert, Tony Rainsberger Aug 2016

Energy Information Augmented Community-Based Energy Reduction, Kevin P. Hallinan, Harvey Enns, Stephenie Ritchey, Phil Brodrick, Nathan Lammers, Nichole Hanus, Mark Rembert, Tony Rainsberger

Harvey Enns

More than one-half of all U.S. states have instituted energy efficiency mandates requiring utilities to reduce energy use. To achieve these goals, utilities have been permitted rate structures to help them incentivize energy reduction projects. This strategy is proving to be only modestly successful in stemming energy consumption growth. By the same token, community energy reduction programs have achieved moderate to very significant energy reduction. The research described here offers an important tool to strengthen the community energy reduction efforts—by providing such efforts energy information tailored to the energy use patterns of each building occupant. The information provided most importantly …


Microscale Investigation Of Thermo-Fluid Transport In The Transition Fil, Region Of An Evaporating Capillary Meniscus Using A Microgravity Environment, Kenneth D. Kihm, Jeffrey S. Allen, Kevin P. Hallinan, David M. Pratt Jul 2016

Microscale Investigation Of Thermo-Fluid Transport In The Transition Fil, Region Of An Evaporating Capillary Meniscus Using A Microgravity Environment, Kenneth D. Kihm, Jeffrey S. Allen, Kevin P. Hallinan, David M. Pratt

Kevin Hallinan

In order to enhance the fundamental understanding of thin film evaporation and thereby improve the critical design concept for two-phase heat transfer devices, microscale heat and mass transport is to be investigated for the transition film region using state-of-the-art optical diagnostic techniques. By utilizing a microgravity environment, the length scales of the transition film region can be extended sufficiently, from submicron to micron, to probe and measure the microscale transport fields which are affected by intermolecular forces. Extension of the thin film dimensions under microgravity will be achieved by using a conical evaporator made of a thin silicon substrate under …


Nanocharacterization Of Bio-Silica Using Atomic Force And Ultrasonic Force Microscopy, Vinaypreet S. Gill, Kevin P. Hallinan, N. S. Brar Jul 2016

Nanocharacterization Of Bio-Silica Using Atomic Force And Ultrasonic Force Microscopy, Vinaypreet S. Gill, Kevin P. Hallinan, N. S. Brar

Kevin Hallinan

Nanotechnology has become central to our research efforts to fabricate relatively smaller size devices, which are more versatile than their older and larger predecessors. Silica is a very important material in this regard. Recently, a new biomimetically inspired path to silica production has been demonstrated. This processing technique was inspired from biological organisms, such as marine diatoms, which produce silica at ambient conditions and almost neutral ph with beautiful control over location and structure. Recently, several researchers have demonstrated that positional control of silica formed could be achieved by application of an electric field to locate charged enzymes responsible for …


Leveraging Students’ Passion And Creativity: Ethos At The University Of Dayton, Margaret Pinnell, Malcolm Daniels, Kevin P. Hallinan, Gretchen Berkemeier Jul 2016

Leveraging Students’ Passion And Creativity: Ethos At The University Of Dayton, Margaret Pinnell, Malcolm Daniels, Kevin P. Hallinan, Gretchen Berkemeier

Kevin Hallinan

The Engineers in Technical Humanitarian Opportunities of Service-learning (ETHOS) program was developed in the spring of 2001 by an interdisciplinary group (electrical, chemical, civil and mechanical) of undergraduate engineering students at the University of Dayton (UD). ETHOS was founded on the belief that engineers are more apt and capable to appropriately serve our world if they have an understanding of technology’s global linkage with values, culture, society, politics, and the economy. Since 2001, the ETHOS program at UD has grown and changed. From conceptualization, to implementation, to maturation and national recognition, the program has addressed challenges of academic acceptance, programmatic …


Experimental Verification Of Source Temperature Modulation Via A Thermal Switch In Thermal Energy Harvesting, Robin Mccarty, D. Monaghan, Kevin P. Hallinan, Brian Sanders Jul 2016

Experimental Verification Of Source Temperature Modulation Via A Thermal Switch In Thermal Energy Harvesting, Robin Mccarty, D. Monaghan, Kevin P. Hallinan, Brian Sanders

Kevin Hallinan

This paper provides a description of research seeking to experimentally verify the effectiveness of a thermal switch used in series with TE devices for waste heat recovery for constant and variable source heat input and for variable source thermal capacitance (mass). Using an experimental set-up comprised serially of a fixed heat source, a variable thermal resistance air gap serving as a thermal switch, a thermoelectric device and a heat sink, the time-averaged power output to power input ratios improved up to 15% and 30% respectively for constant and variable heat input in certain design space conditions. The experimental results, as …


Industrial Solid-State Energy Harvesting: Mechanisms And Examples, Matthew Kocoloski, Carl Eger, Robin Mccarty, Kevin P. Hallinan, J. Kelly Kissock Jul 2016

Industrial Solid-State Energy Harvesting: Mechanisms And Examples, Matthew Kocoloski, Carl Eger, Robin Mccarty, Kevin P. Hallinan, J. Kelly Kissock

Kevin Hallinan

This paper explores the potential for solid-state energy harvesting in industrial applications. In contrast to traditional heat recovery, the output of solid-state devices is electricity, which can be readily used in virtually any plant. The progress in harvesting waste heat via thermoelectric and thermionic generators is described. With second law efficiencies now approaching 50% and 80% respectively, we show that these technologies are on the cusp of practical use. Finally, we present an example of energy harvesting using thermionic devices in an industrial application. The example considers energy harvesting from a furnace at a glass manufacturing facility where exhaust gases …


Energy Information Augmented Community-Based Energy Reduction, Kevin P. Hallinan, Harvey Enns, Stephenie Ritchey, Phil Brodrick, Nathan Lammers, Nichole Hanus, Mark Rembert, Tony Rainsberger Jul 2016

Energy Information Augmented Community-Based Energy Reduction, Kevin P. Hallinan, Harvey Enns, Stephenie Ritchey, Phil Brodrick, Nathan Lammers, Nichole Hanus, Mark Rembert, Tony Rainsberger

Kevin Hallinan

More than one-half of all U.S. states have instituted energy efficiency mandates requiring utilities to reduce energy use. To achieve these goals, utilities have been permitted rate structures to help them incentivize energy reduction projects. This strategy is proving to be only modestly successful in stemming energy consumption growth. By the same token, community energy reduction programs have achieved moderate to very significant energy reduction. The research described here offers an important tool to strengthen the community energy reduction efforts—by providing such efforts energy information tailored to the energy use patterns of each building occupant. The information provided most importantly …


Electro-Hydrodynamic Pumped Hydraulic Actuation With Application To Active Vibration Control, Ahmad Reza Kashani, Sung Kang, Kevin P. Hallinan Jul 2016

Electro-Hydrodynamic Pumped Hydraulic Actuation With Application To Active Vibration Control, Ahmad Reza Kashani, Sung Kang, Kevin P. Hallinan

Kevin Hallinan

A new type of actuation device has been conceptualized that meets the needs of both large displacement, force and bandwidth within a package more compact than currently available magnetostrictive and stack-type piezoelectric actuators of similar rating. This concept relies on micro-scale electrohydrodynamic (EHD) pumping of a dielectric liquid within small channels. Configured as an actuator, the EHD pump(s) would be used to move fluid between two reservoirs—each having a compliant membrane that interfaces to the world to provide the means to achieve vibration cancellation or micro actuation. Ordinarily limited to generating flow in macroscale applications, the EHD pump, when operating …


A Study Of The Fundamental Operations Of A Capillary Driven Heat Transfer Device In Both Normal And Low Gravity Part 1-Liquid Slug Formation In Low Gravity, Jeffrey S. Allen, Kevin P. Hallinan, Jack Lekan Jul 2016

A Study Of The Fundamental Operations Of A Capillary Driven Heat Transfer Device In Both Normal And Low Gravity Part 1-Liquid Slug Formation In Low Gravity, Jeffrey S. Allen, Kevin P. Hallinan, Jack Lekan

Kevin Hallinan

Research has been conducted to observe the operation of a capillary pumped loop (CPL) in both normal and low gravity environments in order to ascertain the causes of device failure. The failures of capillary pumped heat transport devices in low gravity; specifically; evaporator dryout, are not understood and the available data for analyzing the failures is incomplete. To observe failure in these devices an idealized experimental CPL was configured for testing in both a normal-gravity and a low-gravity environment. The experimental test loop was constructed completely of Pyrex tubing to allow for visualization of system operations. Heat was added to …


Clean Energy Infrastructure Educational Initiative, Kevin P. Hallinan, James A. Menart, Robert Gilbert Jul 2016

Clean Energy Infrastructure Educational Initiative, Kevin P. Hallinan, James A. Menart, Robert Gilbert

Kevin Hallinan

The Clean Energy Infrastructure Educational Initiative represents a collaborative effort by the University of Dayton, Wright State University and Sinclair Community College. This effort above all aimed to establish energy related programs at each of the universities while also providing outreach to the local, state-wide, and national communities. At the University of Dayton, the grant has aimed at: solidfying a newly created Master's program in Renewable and Clean Energy; helping to establish and staff a regional sustainability organization for SW Ohio. As well, as the prime grantee, the University of Dayton was responsible for ensuring curricular sharing between WSU and …


Characterization Of Ear-Canal Feedback Pressure Due To Umbo-Drive Forces: Finite-Element Vs. Circuit Models, Morteza Khaleghi, Kevin N. O’Connor, Sunil Puria Feb 2016

Characterization Of Ear-Canal Feedback Pressure Due To Umbo-Drive Forces: Finite-Element Vs. Circuit Models, Morteza Khaleghi, Kevin N. O’Connor, Sunil Puria

Morteza Khaleghi

Background: Hearing-aid users often complain of poor sound quality and difficulty understanding speech in noisy situations. One of the main reasons for this is that the microphone in a hearing aid is typically located above the pinna, rather than inside the ear canal, in order to minimize feedback. This, in turn, reduces the subject’s ability to perceive the acoustic pinna cues above about 4 kHz that are needed for sound localization. Various strategies for minimizing the feedback pressure (thereby increasing the Maximum Stable Gain, MSG) of a wide-bandwidth non-surgical Tympanic Lens are investigated numerically to facilitate placement of a microphone …


An Immersed Boundary Geometric Preprocessor For Arbitrarily Complex Terrain And Geometry, Inanc Senocak, Micah Sandusky, Rey Deleon, Derek Wade, Kyle Felzien, Marianna Budnikova Feb 2016

An Immersed Boundary Geometric Preprocessor For Arbitrarily Complex Terrain And Geometry, Inanc Senocak, Micah Sandusky, Rey Deleon, Derek Wade, Kyle Felzien, Marianna Budnikova

Inanc Senocak

There is a growing interest to apply the immersed boundary method to compute wind fields over arbitrarily complex terrain. The computer implementation of an immersed boundary module into an existing flow solver can be accomplished with minor modifications to the rest of the computer program. However, a versatile preprocessor is needed at the first place to extract the essential geometric information pertinent to the immersion of an arbitrarily complex terrain inside a 3D Cartesian mesh. Errors in the geometric information can negatively impact the correct implementation of the immersed boundary method as part of the solution algorithm. Additionally, the distance …