Open Access. Powered by Scholars. Published by Universities.®

Biomedical Engineering and Bioengineering Commons

Open Access. Powered by Scholars. Published by Universities.®

2016

Biochemistry, Biophysics, and Structural Biology

Institution
Keyword
Publication
Publication Type

Articles 1 - 19 of 19

Full-Text Articles in Biomedical Engineering and Bioengineering

Examination Of Pseudomonas Fluorescence As A Recombinant Expression Host: Cloning, Expression, And Chromatography, Ahmed K.Ali Elmasheiti Dec 2016

Examination Of Pseudomonas Fluorescence As A Recombinant Expression Host: Cloning, Expression, And Chromatography, Ahmed K.Ali Elmasheiti

Graduate Theses and Dissertations

In an effort to expand the pool of bacterium useful for biotechnology applications, Pseudomonas fluorescens, a common gram negative microbe, was examined for its ability to function in a recombinant setting. P. fluorescens is ubiquitous in nature and was initially identified as a soil bacterium found in dirt and is typically associated with plant material. Past literature indicates that it shared characteristics common to Escherichia coli and Bacillus subtilis, including simple growth conditions and potential cloning vectors, providing motivation to look into both the upstream and downstream characteristics of this bacterium. First, it was demonstrated that P. fluorescens could be …


Development Of In Vivo Systems For Detecting And Studying Ribosome Inhibition By Small Molecules, Shijie Huang Nov 2016

Development Of In Vivo Systems For Detecting And Studying Ribosome Inhibition By Small Molecules, Shijie Huang

Chemistry and Chemical Biology ETDs

The ribosome is the quintessential antibacterial drug target, with many structurally and mechanistically distinct classes of antibacterial agents acting by inhibiting ribosome function. Detecting and quantifying ribosome inhibition by small molecules and investigating their binding modes and mechanisms of action are critical to antibacterial drug discovery and development efforts. To develop a ribosome inhibition assay that is operationally simple, yet provides direct information on the drug target and the mechanism of action, we have developed engineered E. coli strains harboring an orthogonal ribosome controlled green fluorescent protein reporter that produce fluorescent signal when the O-ribosome is inhibited. As a proof …


Ionic Basis Of Ventricular Action Potentials, Ariel L. Escobar Oct 2016

Ionic Basis Of Ventricular Action Potentials, Ariel L. Escobar

Science Seminar Series

Dr. Escobar will talk about his cutting-edge approach to understanding molecular mechanisms underlying electrical activity in the heart.


Microfluidic Cantilever Detects Bacteria And Measures Their Susceptibility To Antibiotics In Small Confined Volumes, Hashem Etayash, M. F. Khan, Kamaljit Kaur, Thomas Thundat Oct 2016

Microfluidic Cantilever Detects Bacteria And Measures Their Susceptibility To Antibiotics In Small Confined Volumes, Hashem Etayash, M. F. Khan, Kamaljit Kaur, Thomas Thundat

Pharmacy Faculty Articles and Research

In the fight against drug-resistant bacteria, accurate and high-throughput detection is essential. Here, a bimaterial microcantilever with an embedded microfluidic channel with internal surfaces chemically or physically functionalized with receptors selectively captures the bacteria passing through the channel. Bacterial adsorption inside the cantilever results in changes in the resonance frequency (mass) and cantilever deflection (adsorption stress). The excitation of trapped bacteria using infrared radiation (IR) causes the cantilever to deflect in proportion to the infrared absorption of the bacteria, providing a nanomechanical infrared spectrum for selective identification. We demonstrate the in situ detection and discrimination of Listeria monocytogenes at a …


Nanobubbles Provide Theranostic Relief To Cancer Hypoxia, Christopher M. Long, Pushpak N. Bhandari, Joseph Irudayaraj Aug 2016

Nanobubbles Provide Theranostic Relief To Cancer Hypoxia, Christopher M. Long, Pushpak N. Bhandari, Joseph Irudayaraj

The Summer Undergraduate Research Fellowship (SURF) Symposium

Hypoxia is a common motif among tumors, contributing to metastasis, angiogenesis, cellular epigenetic abnormality, and resistance to cancer therapy. Hypoxia also plays a pivotal role in oncological studies, where it can be used as a principal target for new anti-cancer therapeutic methods. Oxygen nanobubbles were designed in an effort to target the hypoxic tumor regions, thus interrupting the hypoxia-inducible factor-1α (HIF-1α) regulatory pathway and inhibiting tumor progression. At less than 100nm, oxygen nanobubbles act as a vehicle for site-specific oxygen delivery, while also serving as an ultrasound contrast agent for advanced imaging purposes. Through in vitro and in vivo studies, …


Role Of Sumoylation In Mitochondrial Division In Tetrahymena Thermophila, Ramya Modi, James Forney Aug 2016

Role Of Sumoylation In Mitochondrial Division In Tetrahymena Thermophila, Ramya Modi, James Forney

The Summer Undergraduate Research Fellowship (SURF) Symposium

SUMOylation is a post translation modification that involves the addition of a small protein called SUMO, Small Ubiquitin-like MOdifier to a target protein. It is an important mechanism for the regulation of gene expression, the maintenance of genomic stability and in modifying nuclear proteins. More recently evidence has emerged for its importance in regulating mitochondrial fission and fusion in mammalian cells. This study evaluates the parameters for optimal staining of Tetrahymena thermophila mitochondria using two different dyes and then examines different cell lines with defects in the SUMOylation pathway. The first staining method uses Mitotracker Green, a vital stain that …


Differential Association Of Vitronectin And Fibronectin With Glass And Electrospun Fibers Of A Poly (D-Lysine) /Poly (Acrylic Acid), Syed Muhammad Sohaib Zafar Zafar Jul 2016

Differential Association Of Vitronectin And Fibronectin With Glass And Electrospun Fibers Of A Poly (D-Lysine) /Poly (Acrylic Acid), Syed Muhammad Sohaib Zafar Zafar

USF Tampa Graduate Theses and Dissertations

Proteins represent major constituent of the extracellular matrix which plays an important role in the formation, maintenance and remodeling of tissues, this project focuses on adsorption of two specific serum proteins fibronectin (FN) and vitronectin (VTN) responsible for mediating cell matrix interaction through integrin binding, tripeptide Arg-Gly-Asp (RGD) sequence found in these protein features are recognized by αβV3 integrin which ultimately helps in clot formation.


Tunable Nano-Delivery System For Cancer Treatment: A New Approach For Targeted Localized Drug Delivery, Rana Falahat Jun 2016

Tunable Nano-Delivery System For Cancer Treatment: A New Approach For Targeted Localized Drug Delivery, Rana Falahat

USF Tampa Graduate Theses and Dissertations

Localized drug delivery systems have been widely studied as potential replacements for conventional chemotherapy with the capability of providing sustained and controlled drug release in specific targeted sites. They offer numerous benefits over conventional chemotherapy such as enhancing the stability of embedded drugs and preserving their anticancer activity, providing sustained and controlled drug release in the tumor site, reducing toxicity and diminishing subsequent side effects, minimizing the drug loss, averting the need for frequent administrations, and minimizing the cost of therapy.

The aim of this study is to develop a localized drug delivery system with niosomes embedded in a chitosan …


Biophysical Characterization And Theoretical Analysis Of Molecular Mechanisms Underlying Cell Interactions With Poly(N-Isopropylacrylamide) Hydrogels, Michael C. Cross Jun 2016

Biophysical Characterization And Theoretical Analysis Of Molecular Mechanisms Underlying Cell Interactions With Poly(N-Isopropylacrylamide) Hydrogels, Michael C. Cross

USF Tampa Graduate Theses and Dissertations

So-called, “Dynamic biomaterials” comprised of stimuli-responsive hydrogels are useful in a wide variety of biomedical applications including tissue engineering, drug delivery, and biomedical implants. More than 150,000 peer-reviewed articles (as of 2016) have been published on these materials, and more specifically, over 100,000 of these are on the most widely studied, poly(N-isopropylacrylamide). This thermoresponsive polymer in a crosslinked hydrogel network undergoes a large volume phase transition (𝑉/𝑉0 ~ 10 − 100) within a small temperature range (𝑇 ~ 1 − 3𝐾) making it particularly useful for tissue engineering applications because of the ability to control the topographical configuration of …


Hiv Vaccines: Progress, Limitations And A Crispr/Cas9 Vaccine, Omar A. Garcia Martinez May 2016

Hiv Vaccines: Progress, Limitations And A Crispr/Cas9 Vaccine, Omar A. Garcia Martinez

Biology: Student Scholarship & Creative Works

ABSTRACT: The HIV-1 pandemic continues to thrive due to ineffective HIV-1 vaccines. Historically, the world’s most infectious diseases, such as polio and smallpox, have been eradicated or have come close to eradication due to the advent of effective vaccines. Highly active antiretroviral therapy is able to delay the onset of AIDS but can neither rid the body of HIV-1 proviral DNA nor prevent further transmission. A prophylactic vaccine that prevents the various mechanisms HIV-1 has to evade and attack our immune system is needed to end the HIV-1 pandemic. Recent advances in engineered nuclease systems, like the CRISPR/Cas9 system, have …


In Silico Driven Metabolic Engineering Towards Enhancing Biofuel And Biochemical Production, Richard Adam Thompson May 2016

In Silico Driven Metabolic Engineering Towards Enhancing Biofuel And Biochemical Production, Richard Adam Thompson

Doctoral Dissertations

The development of a secure and sustainable energy economy is likely to require the production of fuels and commodity chemicals in a renewable manner. There has been renewed interest in biological commodity chemical production recently, in particular focusing on non-edible feedstocks. The fields of metabolic engineering and synthetic biology have arisen in the past 20 years to address the challenge of chemical production from biological feedstocks. Metabolic modeling is a powerful tool for studying the metabolism of an organism and predicting the effects of metabolic engineering strategies. Various techniques have been developed for modeling cellular metabolism, with the underlying principle …


Stabilizing The Cold Plasma-Stimulated Medium By Regulating Medium’S Composition, Dayun Yan, Niki Nourmohammadi, Ka Bian, Ferid Murad, Jonathan H. Sherman, Michael Keidar May 2016

Stabilizing The Cold Plasma-Stimulated Medium By Regulating Medium’S Composition, Dayun Yan, Niki Nourmohammadi, Ka Bian, Ferid Murad, Jonathan H. Sherman, Michael Keidar

Biochemistry and Molecular Medicine Faculty Publications

Over past several years, the cold plasma-stimulated medium (PSM) has shown its remarkable anti-cancer capacity in par with the direct cold plasma irradiation on cancer cells or tumor tissues. Independent of the cold plasma device, PSM has noticeable advantage of being a flexible platform in cancer treatment. Currently, the largest disadvantage of PSM is its degradation during the storage over a wide temperature range. So far, to stabilize PSM, it must be remained frozen at −80 °C. In this study, we first reveal that the degradation of PSM is mainly due to the reaction between the reactive species and specific …


A 'Tissue Model' To Study The Barrier Effects Of Living Tissues On The Reactive Species Generated By Surface Air Discharge, Tongtong He, Dingxin Liu, Han Xu, Zhichao Liu, Dehui Xu, Dong Li, Qiosong Li, Mingzhe Rong, Michael G. Kong May 2016

A 'Tissue Model' To Study The Barrier Effects Of Living Tissues On The Reactive Species Generated By Surface Air Discharge, Tongtong He, Dingxin Liu, Han Xu, Zhichao Liu, Dehui Xu, Dong Li, Qiosong Li, Mingzhe Rong, Michael G. Kong

Bioelectrics Publications

Gelatin gels are used as surrogates of human tissues to study their barrier effects on incoming reactive oxygen and nitrogen species (RONS) generated by surface air discharge. The penetration depth of nitrite into gelatin gel is measured in real time during plasma treatment, and the permeabilities of nitrite, nitrate, O3 and H2O2 through gelatin gel films are quantified by measuring their concentrations in the water underneath such films after plasma treatment. It is found that the penetration speed of nitrite increases linearly with the mass fraction of water in the gelatin gels, and the permeabilities of …


Investigation Of The Tailoring Steps In Pradimicin Biosynthesis, Kandy L. Napan May 2016

Investigation Of The Tailoring Steps In Pradimicin Biosynthesis, Kandy L. Napan

All Graduate Theses and Dissertations, Spring 1920 to Summer 2023

This research focused on the investigation of the late steps in the biosynthetic pathway of the novel antifungal and antiviral pradimicins A-C. Pradimicins were first isolated from the soil bacterium Actinomadura hibisca. These bioactive molecules are assembled by a type II polyketide biosynthetic pathway. Although the biosynthetic gene cluster of pradimicin has been identified, the functions of the biosynthetic genes and how they work collaboratively to form the final structures of pradimicins remain unknown. This research aims to functionally characterize the enzymes involved in the late steps of the biosynthetic route.

The early biosynthetic steps of pradimicins have been …


Quantitative Comparison Of A Nanoengineered Alumina Coated Cnt Arrays To Sio2 Coated Cnts And Solution Based Delivery System, Shree Aier Jan 2016

Quantitative Comparison Of A Nanoengineered Alumina Coated Cnt Arrays To Sio2 Coated Cnts And Solution Based Delivery System, Shree Aier

Undergraduate Research & Mentoring Program

To meet the growing need for nanoengineered biocompatible materials to serve as drug delivery platforms, in this research, carbon nanotube arrays were fabricated by chemical vapor deposition, followed by an alumina coating by the high yielding, tightly controlled atomic layer deposition. This nanoengineered vertically aligned alumina nanowire array serves as a platform for delivering antigens, which act as cancer adjuvants. The physicochemical characteristics of the nanowires (NWs) can significantly influence the delivery of a biomolecule to immune cells. To investigate the material characteristics, the delivery efficiency of the antigen using NWs was quantitatively assessed by flow cytometry. Further, the mechanism …


Effects Of High Voltage Nanosecond Electric Pulses On Eukaryotic Cells (In Vitro): A Systematic Review, Tina Batista Napotink, Matej Reberšek, P. Thomas Vernier, Babara Mali, Damijan Miklavčič Jan 2016

Effects Of High Voltage Nanosecond Electric Pulses On Eukaryotic Cells (In Vitro): A Systematic Review, Tina Batista Napotink, Matej Reberšek, P. Thomas Vernier, Babara Mali, Damijan Miklavčič

Bioelectrics Publications

For this systematic review, 203 published reports on effects of electroporation using nanosecond high-voltage electric pulses (nsEP) on eukaryotic cells (human, animal, plant) in vitro were analyzed. A field synopsis summarizes current published data in the field with respect to publication year, cell types, exposure configuration, and pulse duration. Published data were analyzed for effects observed in eight main target areas (plasma membrane, intracellular, apoptosis, calcium level and distribution, survival, nucleus, mitochondria, stress) and an additional 107 detailed outcomes. We statistically analyzed effects of nsEP with respect to three pulse duration groups: A: 1–10 ns, B: 11–100 ns and C: …


Noninvasive Measurement Of Electrical Events Associated With A Single Chlorovirus Infection Of A Microalgal Cell, Seung-Woo Lee, Eun-Hee Lee, Gerhard Thiel, James L. Van Etten, Ravi Saraf Jan 2016

Noninvasive Measurement Of Electrical Events Associated With A Single Chlorovirus Infection Of A Microalgal Cell, Seung-Woo Lee, Eun-Hee Lee, Gerhard Thiel, James L. Van Etten, Ravi Saraf

Department of Chemical and Biomolecular Engineering: Faculty Publications

Chlorovirus Paramecium bursaria chlorella virus 1 (PBCV-1) contains a viral-encoded K+ channel imbedded in its internal membrane, which triggers host plasma membrane depolarization during virus infection. This early stage of infection was monitored at high resolution by recording the cell membrane depolarization of a single Chlorella cell during infection by a single PBCV-1 particle. The measurement was achieved by depositing the cells onto a network of one-dimensional necklaces of Au nanoparticles, which spanned two electrodes 70 μm apart. The nanoparticle necklace array has been shown to behave as a single-electron device at room temperature. The resulting electrochemical field-effect transistor …


Investigation Of Enzymatically Synthesized Glycogen As A Novel Nanodendrimer For Therapeutic Delivery, Sarah Ann Engelberth Jan 2016

Investigation Of Enzymatically Synthesized Glycogen As A Novel Nanodendrimer For Therapeutic Delivery, Sarah Ann Engelberth

Legacy Theses & Dissertations (2009 - 2024)

The field of medicinal chemistry is ever expanding, designing and discovering new therapeutic strategies. Oftentimes, it is challenging for these therapeutics to undergo clinical translation due to ineffective administration or unwanted toxicity in vivo. As such, drug delivery vehicles are designed to overcome these hurdles, allowing for delivery to the site of action by improving biodistribution, protecting therapeutic cargo, and decreasing toxicity. The work presented here aims to investigate a naturally-derived carbohydrate nanodendrimer, enzymatically synthesized glycogen (ESG) for drug delivery. This nontoxic, highly-branched, glucose-based structure has interior void volumes to allow for cargo encapsulation as well as a large density …


Restriction And Characterization Of Human Breast Cancer Using A Three-Dimensional Embryonic Stem Cell Model, Bridget Mooney Jan 2016

Restriction And Characterization Of Human Breast Cancer Using A Three-Dimensional Embryonic Stem Cell Model, Bridget Mooney

Legacy Theses & Dissertations (2009 - 2024)

Human breast cancer is currently the highest diagnosed form of cancer and the second leading cause of cancer-related deaths in American women. Triple negative breast cancer is of the basal subtype and displays the worst prognosis owing to its highly metastatic properties. Current treatments focused on eradicating breast tumors in lieu of or following local therapy include chemotherapy, hormonal therapy, and targeted therapy. Hormonal therapy is not an option for triple negative breast cancer as it does not contain hormone receptors and there are currently no approved biological targeted therapies. Chemotherapy has proven unsuccessful because triple negative breast cancer is …