Open Access. Powered by Scholars. Published by Universities.®

Biomedical Engineering and Bioengineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 6 of 6

Full-Text Articles in Biomedical Engineering and Bioengineering

Syngenic Adipose-Derived Stem/Stromal Cells Delivered In Decellularized Adipose Tissue Scaffolds Enhance In Vivo Tissue Regeneration Through Host Cell Recruitment, Kevin P. Robb Dec 2017

Syngenic Adipose-Derived Stem/Stromal Cells Delivered In Decellularized Adipose Tissue Scaffolds Enhance In Vivo Tissue Regeneration Through Host Cell Recruitment, Kevin P. Robb

Electronic Thesis and Dissertation Repository

Decellularized adipose tissue (DAT) represents a promising adipogenic bioscaffold for applications in soft tissue augmentation or reconstruction. With the goal of investigating the role of syngeneic donor adipose-derived stem/stromal cells (ASCs) and host myeloid cells during in vivo adipose tissue regeneration, transgenic reporter mouse strains were used to track these cell populations within ASC-seeded and unseeded DAT scaffolds. Donor ASCs were obtained from dsRed transgenic mice. These cells were shown to express characteristic cell surface markers, and multilineage differentiation capacity was confirmed. To facilitate cell tracking, DAT scaffolds were subcutaneously implanted into MacGreen mice in which myeloid cells express enhanced …


Effects Of Uniaxial Cyclic Strain On Endothelial Progenitor Cells, Maria Alejandra Zeballos Castro Dec 2017

Effects Of Uniaxial Cyclic Strain On Endothelial Progenitor Cells, Maria Alejandra Zeballos Castro

Biomedical Engineering Undergraduate Honors Theses

Despite the high prevalence of calcific aortic valve disease (CAVD), the underlying mechanisms of pathogenesis have not been found yet. Therefore, it is extremely important to study CAVD and understand how it develops. For this matter, we decided to study the potential of endothelial progenitor cells (EPCs) for use in tissue-engineered models of heart valves. EPCs were chosen as the cell source of interest for this study due to their high neovascularization potential and use in regenerative medicine and cardiovascular tissue engineering.

In this project, we aimed to engineer the microenvironment of cells that are involved in the formation of …


Development And Characterization Of Tissue Engineered Blood Vessel Mimics Under "Diabetic" Conditions, Shelby Gabrielle Kunz Jun 2017

Development And Characterization Of Tissue Engineered Blood Vessel Mimics Under "Diabetic" Conditions, Shelby Gabrielle Kunz

Master's Theses

The development of tissue engineered blood vessel mimics for the testing of intravascular devices in vitro has been established in the Cal Poly tissue engineering lab. Due to the prevalence of cardiovascular disease in diabetic patients and minimal accessible studies regarding the interactions between diabetes and intravascular devices used to treat vascular disease, there is a need for the development of diabetic models that more accurately represents diabetic processes occurring in the blood vessels, primarily endothelial dysfunction. This thesis aimed to create a diabetic blood vessel mimic by implementing a high glucose environment for culturing human endothelial cells from healthy …


Development Of A Programmed Electrospun Three Dimensional (3d) Nanofiber Collecter And It’S Application To Orthopedic Implant Coatings, Liang Chen Jan 2017

Development Of A Programmed Electrospun Three Dimensional (3d) Nanofiber Collecter And It’S Application To Orthopedic Implant Coatings, Liang Chen

Wayne State University Dissertations

Orthopedic implants might not directly unite with bones especially in compromised patients even if they have been appropriately fixed. The lack of early osseointegration would lead to the failure of the orthopedic implant. A “bone-like” implant surface is urgently needed to accelerate osseointegration. Electrospun nanofiber (NF) is a promising implant coating due to its highly porous nanoscale structure. It mimics the collagen I nanofibrous network of bone tissue; meanwhile it has been widely used as a drug delivery device. However, its compact and dense structure is not ideal for cell growth. Our strategy was to develop a functional three-dimensional (3D) …


3d Bioprinting Hydrogel For Tissue Engineering An Ascending Aortic Scaffold, Benjamin Stewart Jan 2017

3d Bioprinting Hydrogel For Tissue Engineering An Ascending Aortic Scaffold, Benjamin Stewart

Electronic Theses and Dissertations

The gold standard in 2016 for thoracic aortic grafts is Dacron®, polyethylene terephthalate, due to the durability over time, the low immune response elicited and the propensity for endothelialization of the graft lumen over time. These synthetic grafts provide reliable materials that show remarkable long term patency. Despite the acceptable performance of Dacron® grafts, it is noted that autographs still outperform other types of vascular grafts when available due to recognition of the host's cells and adaptive mechanical properties of a living graft. 3-D bioprinting patient-specific scaffolds for tissue engineering (TE) brings the benefits of non-degrading synthetic …


Developing Afm Techniques For Testing Peg Hydrogels, Hannah L. Cebull, Jessica Stukel, Rebecca Willits Jan 2017

Developing Afm Techniques For Testing Peg Hydrogels, Hannah L. Cebull, Jessica Stukel, Rebecca Willits

Williams Honors College, Honors Research Projects

Many instruments are used to find elastic properties of biological samples using methods such as tensile and bending tests, but using the atomic force microscope (AFM) is considered a non-destructive method because it can provide repeated local stiffness information without damaging the sample. It additionally allows the sample to be tested in an aqueous environment, which is optimal for soft materials such as hydrogels. The nanoindentation is performed via cantilever, measuring the deflection of the cantilever during the contact of the sample using a laser. Compared to hard samples, testing soft materials can present more challenges when working with the …