Open Access. Powered by Scholars. Published by Universities.®

Biomedical Engineering and Bioengineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Biomedical Engineering and Bioengineering

Analysis, Segmentation And Prediction Of Knee Cartilage Using Statistical Shape Models, Joseph Michael Johnson Dec 2013

Analysis, Segmentation And Prediction Of Knee Cartilage Using Statistical Shape Models, Joseph Michael Johnson

Doctoral Dissertations

Osteoarthritis (OA) of the knee is one of the leading causes of chronic disability (along with the hip). Due to rising healthcare costs associated with OA, it is important to fully understand the disease and how it progresses in the knee. One symptom of knee OA is the degeneration of cartilage in the articulating knee. The cartilage pad plays a major role in painting the biomechanical picture of the knee. This work attempts to quantify the cartilage thickness of healthy male and female knees using statistical shape models (SSMs) for a deep knee bend activity. Additionally, novel cartilage segmentation from …


Matrix Remodeling Accompanies In Vitro Articular Cartilage Spherical Shaping, Nathan Thomas Balcom Jun 2013

Matrix Remodeling Accompanies In Vitro Articular Cartilage Spherical Shaping, Nathan Thomas Balcom

Master's Theses

Introduction: Articular cartilage (AC) is a low friction load bearing material found in synovial joints. The natural repair of damaged tissue is difficult and often requires surgical intervention. With large defects it becomes necessary to match the original tissue geometry. We hypothesized that localized collagen (COL) and/or proteoglycan (PG) remodeling occurs during AC spherical reshaping. The objective of this study was to determine the presence, magnitude and depth dependence of COL and PG remodeling that accompanies AC reshaping. Methods: Full thickness AC blocks (7x7 mm2 surface area) were harvested from the ridges of the patellofemoral groove of immature (1-3 …


Effect Of Rolling On Viscoelastic Fluids Using A Novel Testing Device, Aswini Mangadu Jan 2013

Effect Of Rolling On Viscoelastic Fluids Using A Novel Testing Device, Aswini Mangadu

Dissertations and Theses

The purpose of this research thesis project was to develop a mechanical testing device that could enable us to load articular cartilage with a rolling/sliding motion. This novel device was then used to observe the effect of a rolling motion on the fluid film thickness of different lubricants (motor oil, synovial fluid and Hyaluronic Acid (HA)) to varying loads (1kg, 2,kg, 3kg and 4kg) and speeds (10, 25, 48 and 91 mm/s) applied on the sample fluids for 10 cycles. We were able to examine the effect of different speeds within each load for each of the fluid that was …