Open Access. Powered by Scholars. Published by Universities.®

Biomedical Engineering and Bioengineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 17 of 17

Full-Text Articles in Biomedical Engineering and Bioengineering

The Advancement Of Bacterial Cellulose As A Bone And Vascular Scaffolds, Ryan Lee Hammonds Dec 2013

The Advancement Of Bacterial Cellulose As A Bone And Vascular Scaffolds, Ryan Lee Hammonds

Doctoral Dissertations

Bacterial cellulose (BC) is a natural hydrogel made of nanofibers. This material has been used in commercial products, including wound dressings. BC can be modified and optimized for improved performance in multiple applications. This work will focus on producing and characterizing resorbable cellulose, a composite for bone applications, and a composite for a synthetic venous valve leaflet.

BC can be produced and modified to perform as a degradable tissue scaffold. This is achieved by an oxidation procedure after the initial production and purification of native BC. A material characterization of oxidized BC was performed to identify the changes in properties …


Electrospinning Of Core-Shell Collagen Nanofibers, Ying Li Aug 2013

Electrospinning Of Core-Shell Collagen Nanofibers, Ying Li

Electronic Thesis and Dissertation Repository

In tissue engineering, the scaffold plays a critical role in guiding and supporting cells to function and grow optimally. The electrospun nanofibrous scaffold can serve as a near ideal substrate for tissue engineering because it has high surface area and the three-dimensional interconnected porous network can enhance cell attachment and proliferation. Core-shell nanofibrous scaffolds produced with coaxial electrospinning allow bioactive molecule encapsulation to improve cell adhesion, mediate and promote the proper signaling among the cells for their functioning and growth. In the current study, core-shell collagen nanofibers were fabricated via coaxial electrospinning with horizontal and vertical configurations. Core-shell nanofibers with …


Continuum Deformation Model For Drug-Eluting Stent (Des) Medical Devices Using Finite Element Analysis (Fea), Solki Lee Aug 2013

Continuum Deformation Model For Drug-Eluting Stent (Des) Medical Devices Using Finite Element Analysis (Fea), Solki Lee

Theses and Dissertations

The development of coronary stent medical devices was originally considered as a major advance in the treatment of obstructive cardiovascular disease. The implantation of stent, however, involves clinical adverse effects such as re-narrowing of arterial wall after stenting. Drug-eluting stents (DES) have been developed to prevent such adverse effects by slowly delivering anti-proliferative and/or anti-inflammatory drugs from coating composites of drug-containing polymers. One of the major issues in DES implantation is, however, that the coatings comprised of drug and polymer composite phases are often fractured or delaminated during the deployment of stent, which can lead to more serious clinical complications. …


Density Functional Theory (Dft) Study On The Hydrolysis Behavior Of Degradable Mg/Mg Alloys For Biomedical Applications, Marjan Nezafati Aug 2013

Density Functional Theory (Dft) Study On The Hydrolysis Behavior Of Degradable Mg/Mg Alloys For Biomedical Applications, Marjan Nezafati

Theses and Dissertations

Magnesium-based (Mg and/or Mg alloys) materials possess many advantageous physicochemical/biological characteristics such as good biocompatibility and similarity of the mechanical properties to the human bone tissue, which renders this material a promising candidate for the biomedical and implant applications. One of the most attractive features of Mg-based materials is the degradability in the physiological environment. With the burst of research on the biodegradable materials for the healthcare device applications, Mg and its alloys attracted a strong attention in the bioengineering field in recent years. However, the major limitation of applying Mg-based materials to biomedical applications is the fast degradation/corrosion rate …


Evaluation Of Corrosion Properties Of Proprietary Metal Alloy Stents For In-Vivo Use, Michael David Bremner Jun 2013

Evaluation Of Corrosion Properties Of Proprietary Metal Alloy Stents For In-Vivo Use, Michael David Bremner

Materials Engineering

To assess corrosion rates of metal alloy bio-absorbable stents an experimental set-up was designed to mimic the coronary artery environment. The artery was modeled using 4mm diameter Tecoflex tubing and the metal alloy stents were inserted into the tubing using a catheter. As is the case in cardiac surgery, the catheter with the stent and a microballoon were maneuvered to the desired position. The microballoon was then slowly inflated to expand the stent and compress it against the tubing walls. The catheter and microballoon were then withdrawn. A circulating pump system was set up to cycle fetal bovine serum (FBS) …


Fluorescence Characterization Of Quantum Dots For Use As Biomarkers, Logan M. Grimes Jun 2013

Fluorescence Characterization Of Quantum Dots For Use As Biomarkers, Logan M. Grimes

Materials Engineering

Fluorescence profiles of quantum dots (QDs) were characterized to select the ideal QDs for encapsulation in phospholipids for use as biomarkers to selectively adhere to cancer cells. QDs were synthesized and extracted 0, 30, 60, and 90 seconds after precursor compounds were mixed. These extractions were isolated by extraction time. Portions from each vial were coated in a zinc sulfide shelling procedure, leaving at least half of the QD solution unshelled. These samples were characterized over four days to monitor fluctuations in fluorescence. This was done utilizing an Ocean Optics spectrometer in conjunction with Spectra Suite software. The central wavelength, …


The Fabrication & Characterization Of An Electrokinetic Microfluidic Pump From Su-8, A Negative Epoxy-Based Photoresist, Nash Anderson Jun 2013

The Fabrication & Characterization Of An Electrokinetic Microfluidic Pump From Su-8, A Negative Epoxy-Based Photoresist, Nash Anderson

Master's Theses

Microfluidics refers to manipulation, precise control, and behavior of fluids at the micro and nanoliter scales. It has entered the realm of science as a way to precisely measure or mix small amounts of fluid to perform highly controlled reactions. Glass and polydimethylsiloxane (PDMS) are common materials used to create microfluidic devices; however, glass is difficult to process and PDMS is relatively hydrophobic. In this study, SU-8, an epoxy based (negative) photoresist was used to create various electrokinetic microfluidic chips. SU-8 is commonly used in microelectromechanical design. Spin coating of various SU-8 formulations allows for 1 μm to 100 μm …


Shelf Life Study Of Electrospun Plga Copolymers, Sean Youra, Nick Hudson Jun 2013

Shelf Life Study Of Electrospun Plga Copolymers, Sean Youra, Nick Hudson

Biomedical Engineering

Poly(lactic-co-glycolic acid) (PLGA) is one of the most commonly used copolymers for electrospinning in tissue engineering applications. However, most research has not focused on the copolymer itself in regards to how long it can be used effectively and if varying the concentrations of polylactic acid (PLA) and polyglycolic acid (PGA) affect the resulting properties. Electrospinning is the method we use to create the three-dimensional constructs, or “scaffolds”, for the blood vessel mimic (BVM) in the tissue engineering lab. The aim of our project was to investigate if the morphology and mechanical properties of the scaffolds changed over time when they …


Electrospun Plant Protein Scaffolds With Fibers Oriented Randomly And Evenly In Three-Dimensions For Soft Tissue Engineering Applications, Shaobo Cai Jun 2013

Electrospun Plant Protein Scaffolds With Fibers Oriented Randomly And Evenly In Three-Dimensions For Soft Tissue Engineering Applications, Shaobo Cai

Department of Textiles, Merchandising, and Fashion Design: Dissertations, Theses, and Student Research

In this work, electrospinnable and water stable soyprotein was extracted by using a reducing agent in mild alkaline condition, and novel 3D zein and 3D pure soyprotein electrospun scaffolds with three-dimensionally and randomly oriented fibers and large interconnected pores were successfully fabricated by reducing surface resistivity of materials. This unique structure is different from most electrospun scaffolds with fibers oriented mainly in one direction. The structure of novel 3D scaffolds could more closely mimic the 3D randomly oriented fibrous architectures in many native extracellular matrixes (ECM). Confocal laser scanning microscope shows that instead of becoming flattened cells when cultured in …


Femtosecond Laser Patterned Templates And Imprinted Polymer Structures, Deepak Rajput May 2013

Femtosecond Laser Patterned Templates And Imprinted Polymer Structures, Deepak Rajput

Doctoral Dissertations

Femtosecond laser machining is a direct-write lithography technique by which user-defined patterns are efficiently and rapidly generated at the surface or within the bulk of transparent materials. When femtosecond laser machining is performed with tightly focused amplified pulses in single-pulse mode, transparent substrates like fused silica can be surface patterned with high aspect ratio (>10:1) and deep (>10 μm) nanoholes. The main objective behind this dissertation is to develop single-pulse amplified femtosecond laser machining into a novel technique for the production of fused silica templates with user-defined patterns made of high aspect ratio nanoholes. The size of the …


Design And Testing Of Novel Mouthguard With Intermediate Nitinol And Foam Layers, Adam Kessler May 2013

Design And Testing Of Novel Mouthguard With Intermediate Nitinol And Foam Layers, Adam Kessler

UNLV Theses, Dissertations, Professional Papers, and Capstones

It is the aim of this study to investigate a novel mouthguard design that incorporates the use of a nickel-titanium (Nitinol) layer and thin foam layer in addition to EVA layers. It is thought that the Nitinol layer can distribute the force of an impact and that the thin foam layer may absorb this distributed force better than a solid EVA mouthguard of the same thickness. Rectangular, flat coupons representative of several mouthguard configurations were constructed for testing using an instrumented drop-weight impact tower. The coupon configurations include a control made of laminated EVA, a group of laminated EVA and …


Closed Loop Control Of A Cylindrical Tube Type Ionic Polymer Metal Composite (Ipmc), Benjamin Mead May 2013

Closed Loop Control Of A Cylindrical Tube Type Ionic Polymer Metal Composite (Ipmc), Benjamin Mead

UNLV Theses, Dissertations, Professional Papers, and Capstones

The goal of this research is to provide a framework for the integration of tube type, cylindrical Ionic Polymer Metal-Composite (IPMC) into conventional devices. IPMCs are one of the most widely used types of electro-active polymer actuator, due to their low electric driving potential and large deformation range. For this research a tube type IPMC was investigated. This IPMC has a circular cross section with four separate electrodes on its surface and a hole through the middle. The four electrodes allow for biaxial bending and accurate control of the tip location. One of the main advantages of using this type …


Sol-Gel Derived Biodegradable And Bioactive Organic-Inorganic Hybrid Biomaterials For Bone Tissue Engineering, Bedilu A. Allo Apr 2013

Sol-Gel Derived Biodegradable And Bioactive Organic-Inorganic Hybrid Biomaterials For Bone Tissue Engineering, Bedilu A. Allo

Electronic Thesis and Dissertation Repository

Treatments of bone injuries and defects have been largely centered on replacing the lost bone with tissues of allogeneic or xenogeneic sources as well as synthetic bone substitutes, which in all lead to limited degree of structural and functional recovery. As a result, tissue engineering has emerged as a viable technology to regenerate the structures and therefore recover the functions of bone tissue rather than replacement alone. Hence, the current strategies of bone tissue engineering and regeneration rely on bioactive scaffolds to mimic the natural extracellular matrix (ECM) as templates onto which cells attach, multiply, migrate and function.

In this …


Bacterial Growth On Metal And Non-Metal Surfaces In A Static Bioreactor, Rolan Yuk Loong Liong Mar 2013

Bacterial Growth On Metal And Non-Metal Surfaces In A Static Bioreactor, Rolan Yuk Loong Liong

Master's Theses

Research was conducted to observe bacterial growth on the surface of metals in a static bioreactor. Metal and non-metal samples were subjected to bacterial exposure (1 day and 9 days). The metal samples were surface treated prior to bacterial exposure. The microstructures of the surface treated samples were analyzed by optical microscopy. After exposure, the microstructures of the samples were analyzed by scanning electron microscopy (SEM). The analysis suggested that microbial attachment on the surface was related to the underlying microstructure of steel. The preferential attachment of microbes could potentially be influenced by cathodic and anodic regions created by the …


Diagnosis Of Systemic Inflammation Using Transendothelial Electrical Resistance And Low-Temperature Co-Fired Ceramic Materials, William L. Mercke Jan 2013

Diagnosis Of Systemic Inflammation Using Transendothelial Electrical Resistance And Low-Temperature Co-Fired Ceramic Materials, William L. Mercke

Theses and Dissertations--Chemical and Materials Engineering

Systemic inflammation involves a complex array of cytokines that can result in organ dysfunction. Mortality remains high despite the vast amount of research conducted to find an effective biomarker. The cause of systemic inflammation can be broad and non-specific; therefore, this research investigates using transendothelial electrical resistance (TEER) measurements to better define systemic inflammatory response syndrome (SIRS)/sepsis within a patient. Results show a difference in TEER measurements between healthy individuals and SIRS-rated patients. This research also displays correlations between TEER measurements and biomarkers currently studied with systemic inflammation (tumor necrosis factor-α, C- reactive protein, procalcitonin). Furthermore, this research also presents …


Structured Materials For Catalytic And Sensing Applications, Selma Hokenek Jan 2013

Structured Materials For Catalytic And Sensing Applications, Selma Hokenek

USF Tampa Graduate Theses and Dissertations

The optical and chemical properties of the materials used in catalytic and sensing applications directly determine the characteristics of the resultant catalyst or sensor. It is well known that a catalyst needs to have high activity, selectivity, and stability to be viable in an industrial setting. The hydrogenation activity of palladium catalysts is known to be excellent, but the industrial applications are limited by the cost of obtaining catalyst in amounts large enough to make their use economical. As a result, alloying palladium with a cheaper, more widely available metal while maintaining the high catalytic activity seen in monometallic catalysts …


Fabricating And Characterizing Physical Properties Of Electrospun Polypeptide-Based Nanofibers, Dhan Bahadur Khadka Jan 2013

Fabricating And Characterizing Physical Properties Of Electrospun Polypeptide-Based Nanofibers, Dhan Bahadur Khadka

USF Tampa Graduate Theses and Dissertations

This dissertation has aimed to fabricate polypeptide based biomaterial and characterize physical properties. Electrospinning is used as a tool for the sample fabrication. Project focused on determining the feasibility of electrospinning of certain synthetic polypeptides and certain elastin-like peptides from aqueous feedstocks and to characterize physical properties of polymer aqueous solution, cast film and spun fibers and fiber mats. The research involves peptide design, polymer electrospinning, fibers crosslinking, determining the extent of crosslinking, fibers protease degradation study, fibers stability and self-organization analysis, structure and composition determination by various spectroscopy and microscopy techniques and characterization of mechanical properties of individual suspended …