Open Access. Powered by Scholars. Published by Universities.®

Biomedical Engineering and Bioengineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Biomedical Engineering and Bioengineering

Development Of A Protocol To Measure Gene Expression In The Mouse Tibia, Daniel Hoover Jun 2012

Development Of A Protocol To Measure Gene Expression In The Mouse Tibia, Daniel Hoover

Biomedical Engineering

Numerous molecular factors active in bone tissue direct fracture repair and remodeling which can be altered by disease conditions such as Peripheral Arterial Disease (PAD) and Osteoporosis. Methods of molecular biology are commonly applied to investigate the expression and role of these molecular factors. This project presents a robust three-step protocol for examining gene expression in the mouse tibia. The protocol begins with isolating RNA from a flash frozen tibia sample. The isolated RNA is reverse transcribed into cDNA. Finally, PCR is performed to indentify expressed genes. Establishing this protocol will allow further research into the mechanisms of bone remodeling …


Mri-Based Attenuation Correction In Emission Computed Tomography, Harry R. Marshall May 2012

Mri-Based Attenuation Correction In Emission Computed Tomography, Harry R. Marshall

Electronic Thesis and Dissertation Repository

The hybridization of magnetic resonance imaging (MRI) with positron emission tomography (PET) or single photon emission computed tomography (SPECT) enables the collection of an assortment of biological data in spatial and temporal register. However, both PET and SPECT are subject to photon attenuation, a process that degrades image quality and precludes quantification. To correct for the effects of attenuation, the spatial distribution of linear attenuation coefficients (μ-coefficients) within and about the patient must be available. Unfortunately, extracting μ-coefficients from MRI is non-trivial. In this thesis, I explore the problem of MRI-based attenuation correction (AC) in emission tomography.

In particular, I …


Development Of A Microfluidic Device Coupled To Microdialysis Sampling For The Pre-Concentration Of Cytokines, Randy Francisco Espinal Cabrera May 2012

Development Of A Microfluidic Device Coupled To Microdialysis Sampling For The Pre-Concentration Of Cytokines, Randy Francisco Espinal Cabrera

Graduate Theses and Dissertations

A proof-of-concept microfluidic device combined with heparin-immobilized magnetic beads was created to concentrate cytokine proteins collected from microdialysis samples. Cytokines are known to be related to several diseases such as cancer, and Parkinson's diseases, so to be able to develop more effective diseases treatments their interactions have to be well understood. Amine-functionalized polystyrene and carboxyl-functionalized magnetic microspheres of ~6.0 ìm in diameter were used to immobilize heparin. The amount of heparin immobilized on polystyrene beads was 5.82 x 10-8 ± 0.36 x 10-8 M per 1.0 x 106 beads and for magnetic beads was 0.64 x 10-8 ± 0.01 x …


Development Of A Bi-Directional Electronics Platform For Advanced Neural Applications, Luca Abbati Jan 2012

Development Of A Bi-Directional Electronics Platform For Advanced Neural Applications, Luca Abbati

USF Tampa Graduate Theses and Dissertations

This work presents a high-voltage, high-precision bi-directional multi-channel system capable of stimulating neural activity through bi-phasic pulses of amplitude up to ∓50 V while recording very low-voltage responses as low as tens of microvolts. Most of the systems reported from the scientific community possess at least one of the following common limitations: low stimulation voltages, low gain capabilities, or insufficient bandwidth to acquire a wide range of different neural activities.

While systems can be found that present remarkable capabilities in one or more specific areas, a versatile system that performs over all these aspects is missing. Moreover, as many novel …