Open Access. Powered by Scholars. Published by Universities.®

Biomedical Engineering and Bioengineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 14 of 14

Full-Text Articles in Biomedical Engineering and Bioengineering

Dc And Microwave Analysis Of Gallium Arsenide Field-Effect Transistor-Based Nucleic Acid Biosensors, John K. Kimani Dec 2012

Dc And Microwave Analysis Of Gallium Arsenide Field-Effect Transistor-Based Nucleic Acid Biosensors, John K. Kimani

Theses and Dissertations

Sensitive high-frequency microwave devices hold great promise for biosensor design. These devices include GaAs field effect transistors (FETs), which can serve as transducers for biochemical reactions, providing a platform for label-free biosensing. In this study, a two-dimensional numerical model of a GaAs FET-based nucleic acid biosensor is proposed and simulated. The electronic band structure, space charge density, and current-voltage relationships of the biosensor device are calculated. The intrinsic small signal parameters for the device are derived from simulated DC characteristics and used to predict AC behavior at high frequencies.

The biosensor model is based on GaAs field-effect device physics, semiconductor …


Accelerating Mri Data Acquisition Using Parallel Imaging And Compressed Sensing, Haifeng Wang Dec 2012

Accelerating Mri Data Acquisition Using Parallel Imaging And Compressed Sensing, Haifeng Wang

Theses and Dissertations

Magnetic Resonance Imaging (MRI) scanners are one of important medical instruments, which can achieve more information of soft issues in human body than other medical instruments, such as Ultrasound, Computed Tomography (CT), Single Photon Emission Computed Tomography (SPECT), Positron Emission Tomography (PET), etc. But MRI's scanning is slow for patience of doctors and patients. In this dissertation, the author proposes some methods of parallel imaging and compressed sensing to accelerate MRI data acquisition. Firstly, a method is proposed to improve the conventional GRAPPA using cross-sampled auto-calibration data. This method use cross-sampled auto-calibration data instead of the conventional parallel-sampled auto-calibration data …


Development Of A Novel Handheld Device For Active Compensation Of Physiological Tremor, Abhijit Saxena Oct 2012

Development Of A Novel Handheld Device For Active Compensation Of Physiological Tremor, Abhijit Saxena

Electronic Thesis and Dissertation Repository

In microsurgery, the human hand imposes certain limitations in accurately positioning the tip of a device such as scalpel. Any errors in the motion of the hand make microsurgical procedures difficult and involuntary motions such as hand tremors can make some procedures significantly difficult to perform. This is particularly true in the case of vitreoretinal microsurgery. The most familiar source of involuntary motion is physiological tremor. Real-time compensation of tremor is, therefore, necessary to assist surgeons to precisely position and manipulate the tool-tip to accurately perform a microsurgery. In this thesis, a novel handheld device (AID) is described for compensation …


Metrics For Evaluating Surgical Microscope Usage During Myringotomy, Arefin M. Shamsil Aug 2012

Metrics For Evaluating Surgical Microscope Usage During Myringotomy, Arefin M. Shamsil

Electronic Thesis and Dissertation Repository

Abstract

Although teaching and learning surgical microscope manoeuvring is a fundamental step in middle ear surgical training, currently there is no objective method to teach or assess this skill. This thesis presents an experimental study designed to implement and test sets of metrics capable of numerically evaluating microscope manoeuvrability and qualitatively assessing surgical expertise of a subject during a middle ear surgery called myringotomy. The experiment involved performing a myringotomy on a fixed cadaveric ear. As participants, experienced ear-nose-throat (ENT) surgeons and ENT surgical residents were invited. While performing the procedure, their microscope manoeuvring motions were captured as translational and …


Preoperative Planning Of Robotics-Assisted Minimally Invasive Cardiac Surgery Under Uncertainty, Hamidreza Azimian Aug 2012

Preoperative Planning Of Robotics-Assisted Minimally Invasive Cardiac Surgery Under Uncertainty, Hamidreza Azimian

Electronic Thesis and Dissertation Repository

In this thesis, a computational framework for patient-specific preoperative planning of Robotics-Assisted Minimally Invasive Cardiac Surgery (RAMICS) is developed. It is expected that preoperative planning of RAMICS will improve the rate of success by considering robot kinematics, patient-specific thoracic anatomy, and procedure-specific intraoperative conditions. Given the significant anatomical features localized in the preoperative computed tomography images of a patient's thorax, port locations and robot orientations (with respect to the patient's body coordinate frame) are determined to optimize characteristics such as dexterity, reachability, tool approach angles and maneuverability. In this thesis, two approaches for preoperative planning of RAMICS are proposed that …


Optical Cryoimaging Of Celular Redox In Kidneys From Diabetic Mice, Sepideh Maleki Aug 2012

Optical Cryoimaging Of Celular Redox In Kidneys From Diabetic Mice, Sepideh Maleki

Theses and Dissertations

Diabetic Nephropathy (DN) is the major single cause of end stage renal diseases (ESRD) in the United States. Diabetes is the third leading fatal disorder after cancer and heart disease. It is affecting 8.3% of the residents of the United States, with a total healthcare cost of $174 billion/yr by 2010.

There currently exists a need for a sensitive and specific diagnosis for temporal detection of oxidative stress (OS) in cellular metabolic levels, which plays an early role in the development of DN. The objective of this research is to use a fluorescence optical imaging technique in order to delineate …


Polygrasp: Reach; Myoelectric Prosthetic Hand Iteration, Devon Patrick Augustus, Mighells Blaed Deuel, Ian Noel Fraser, Nicholas Philip Moesser Jun 2012

Polygrasp: Reach; Myoelectric Prosthetic Hand Iteration, Devon Patrick Augustus, Mighells Blaed Deuel, Ian Noel Fraser, Nicholas Philip Moesser

Mechanical Engineering

Amputations are a common occurrence in soldiers returning home who have suffered the effects of IED and munitions explosions. For upper limb amputees, trans-radial amputations are the most common. Traditional hook devices do not offer an adequate level of normalcy for users, prompting the use of myoelectric devices. While current myoelectric devices do offer a more natural experience, they come with a host of other problems that makes their adoption by service personnel not desirable or not permitted by the VA. PolyGrasp Reach seeks to reduce weight and cost and improve performance. This addresses several of the issues with devices …


Coupling Of Audio Signals Into Afm Images, Matthew Manning Jun 2012

Coupling Of Audio Signals Into Afm Images, Matthew Manning

Honors Theses

It is well known that Atomic Force Microscopy imaging is capable of yielding high resolution results with of surfaces at the nanoscale. However, despite the device capabilities and vast applications, AFM microscopy is possibly the most prone to the creation of image artifacts. AFM imaging can easily, and is often, corrupted by various external forces. The most obvious and measurable form of external interference is of course the presence of ambient noise. Most AFM manufactures attempt to counter the effects of such noise on the imaging process through use of noise-proof or noise-resistant shields that cover the microscope aperture. Without …


Development And Experimental Analysis Of Wireless High Accuracy Ultra-Wideband Localization Systems For Indoor Medical Applications, Michael Joseph Kuhn May 2012

Development And Experimental Analysis Of Wireless High Accuracy Ultra-Wideband Localization Systems For Indoor Medical Applications, Michael Joseph Kuhn

Doctoral Dissertations

This dissertation addresses several interesting and relevant problems in the field of wireless technologies applied to medical applications and specifically problems related to ultra-wideband high accuracy localization for use in the operating room. This research is cross disciplinary in nature and fundamentally builds upon microwave engineering, software engineering, systems engineering, and biomedical engineering. A good portion of this work has been published in peer reviewed microwave engineering and biomedical engineering conferences and journals. Wireless technologies in medicine are discussed with focus on ultra-wideband positioning in orthopedic surgical navigation. Characterization of the operating room as a medium for ultra-wideband signal transmission …


Novel Phantoms And Post-Processing For Diffusion Spectrum Imaging, Vaibhav Juneja May 2012

Novel Phantoms And Post-Processing For Diffusion Spectrum Imaging, Vaibhav Juneja

Dissertations & Theses (Open Access)

High Angular Resolution Diffusion Imaging (HARDI) techniques, including Diffusion Spectrum Imaging (DSI), have been proposed to resolve crossing and other complex fiber architecture in the human brain white matter. In these methods, directional information of diffusion is inferred from the peaks in the orientation distribution function (ODF). Extensive studies using histology on macaque brain, cat cerebellum, rat hippocampus and optic tracts, and bovine tongue are qualitatively in agreement with the DSI-derived ODFs and tractography. However, there are only two studies in the literature which validated the DSI results using physical phantoms and both these studies were not performed on a …


Synergistic Effect Of Subnanosecond Pulsed Electric Fields And Temperature On The Viability Of Biological Cells, James Thomas Camp Apr 2012

Synergistic Effect Of Subnanosecond Pulsed Electric Fields And Temperature On The Viability Of Biological Cells, James Thomas Camp

Electrical & Computer Engineering Theses & Dissertations

Pulsed electric fields have been used to induce a biological response in cells, and at sufficient energy, can cause cell death. By reducing the pulse duration from presently used nanosecond to subnanosecond ranges, the electric field can be delivered to biological tissue non-invasively by the use of an antenna instead of electrodes, such as needles. Studies have previously been completed in which the aim was to determine the energy density (electric field strength, number of pulses) required to induce cell death with 800 ps pulses. Based on this data, it was concluded that for pulse durations of 200 ps, with …


Nonosecond Pulsed Electric Field Induced Changes In Dielectric Properties Of Biological Cells, Jie Zhuang Apr 2012

Nonosecond Pulsed Electric Field Induced Changes In Dielectric Properties Of Biological Cells, Jie Zhuang

Electrical & Computer Engineering Theses & Dissertations

Nanosecond pulsed electric field induced biological effects have been a focus of research interests since the new millennium. Promising biomedical applications, e.g. tumor treatment and wound healing, are emerging based on this principle. Although the exact mechanisms behind the nanosecond pulse-cell interactions are not completely understood yet, it is generally believed that charging along the cell membranes (including intracellular membranes) and formation of membrane pores trigger subsequent biological responses, and the number and quality of pores are responsible for the cell fate. The immediate charging response of a biological cell to a nanosecond pulsed electric field exposure relies on the …


Optimization Of Bio-Impedance Sensor For Enhanced Detection And Characterization Of Adherent Cells, Dorielle T. Price Jan 2012

Optimization Of Bio-Impedance Sensor For Enhanced Detection And Characterization Of Adherent Cells, Dorielle T. Price

USF Tampa Graduate Theses and Dissertations

This research focuses on the detection and characterization of cells using

impedance-based techniques to understand the behavior and response of cells to internal/environmental changes. In combination with impedimetric sensing techniques, the biosensors in this work allow rapid, label-free, quantitative measurements and are very sensitive to changes in environment and cell morphology. The biosensor design and measurement setup is optimized to detect and differentiate cancer cells and healthy (normal) cells. The outcome of this work will provide a foundation for enhanced 3-dimensional tumor analysis and characterization; thus creating an avenue for earlier cancer detection and reduced healthcare costs.

The magnitude of …


Development Of A Bi-Directional Electronics Platform For Advanced Neural Applications, Luca Abbati Jan 2012

Development Of A Bi-Directional Electronics Platform For Advanced Neural Applications, Luca Abbati

USF Tampa Graduate Theses and Dissertations

This work presents a high-voltage, high-precision bi-directional multi-channel system capable of stimulating neural activity through bi-phasic pulses of amplitude up to ∓50 V while recording very low-voltage responses as low as tens of microvolts. Most of the systems reported from the scientific community possess at least one of the following common limitations: low stimulation voltages, low gain capabilities, or insufficient bandwidth to acquire a wide range of different neural activities.

While systems can be found that present remarkable capabilities in one or more specific areas, a versatile system that performs over all these aspects is missing. Moreover, as many novel …