Open Access. Powered by Scholars. Published by Universities.®

Biomedical Engineering and Bioengineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 7 of 7

Full-Text Articles in Biomedical Engineering and Bioengineering

Ultrasensitive Tapered Optical Fiber Refractive Index, Erem Ujah, Meimei Lai, Gymama Slaughter Jan 2023

Ultrasensitive Tapered Optical Fiber Refractive Index, Erem Ujah, Meimei Lai, Gymama Slaughter

Electrical & Computer Engineering Faculty Publications

Refractive index (RI) sensors are of great interest for label-free optical biosensing. A tapered optical fiber (TOF) RI sensor with micron-sized waist diameters can dramatically enhance sensor sensitivity by reducing the mode volume over a long distance. Here, a simple and fast method is used to fabricate highly sensitive refractive index sensors based on localized surface plasmon resonance (LSPR). Two TOFs (l = 5 mm) with waist diameters of 5 µm and 12 µm demonstrated sensitivity enhancement at λ = 1559 nm for glucose sensing (5-45 wt%) at room temperature. The optical power transmission decreased with increasing glucose concentration due …


Cu And Ni Co-Sputtered Heteroatomic Thin Film For Enhanced Nonenzymatic Glucose Detection, Brianna Barbee, Baleeswaraiah Muchharla, Adetayo Adedeji, Abdennaceur Karoui, Kishor Kumar Sadasivuni, Mizaj Shabil Sha, Aboubakr M. Abdullah4, Gymama Slaughter, Bijandra Kumar May 2022

Cu And Ni Co-Sputtered Heteroatomic Thin Film For Enhanced Nonenzymatic Glucose Detection, Brianna Barbee, Baleeswaraiah Muchharla, Adetayo Adedeji, Abdennaceur Karoui, Kishor Kumar Sadasivuni, Mizaj Shabil Sha, Aboubakr M. Abdullah4, Gymama Slaughter, Bijandra Kumar

Bioelectrics Publications

In this work, we report a wafer-scale and chemical-free fabrication of nickel (Ni) and copper (Cu) heteroatomic Cu–Ni thin films using RF magnetron sputtering technique for non-enzymatic glucose sensing application. The as-prepared wafer-scale Cu–Ni thin films exhibits excellent electrocatalytic activity toward glucose oxidation with a 1.86 μM detection limit in the range of 0.01 mM to 20 mM range. The Cu–Ni film shows 1.3- and 5.4-times higher glucose oxidation activity in comparison to the Cu and Ni electrodes, respectively. The improved electrocatalytic activity is attributed to the synergistic effect of the bimetallic catalyst and high density of grain boundaries. The …


Β-Amyloid And Tau Drive Early Alzheimer's Disease Decline While Glucose Hypometabolism Drives Late Decline, Tyler C. Hammond, Xin Xing, Chris Wang, David Ma, Kwangsik Nho, Paul K. Crane, Fanny Elahi, David A. Ziegler, Gongbo Liang, Qiang Cheng, Lucille M. Yanckello, Nathan Jacobs, Ai-Ling Lin Jul 2020

Β-Amyloid And Tau Drive Early Alzheimer's Disease Decline While Glucose Hypometabolism Drives Late Decline, Tyler C. Hammond, Xin Xing, Chris Wang, David Ma, Kwangsik Nho, Paul K. Crane, Fanny Elahi, David A. Ziegler, Gongbo Liang, Qiang Cheng, Lucille M. Yanckello, Nathan Jacobs, Ai-Ling Lin

Sanders-Brown Center on Aging Faculty Publications

Clinical trials focusing on therapeutic candidates that modify β-amyloid (Aβ) have repeatedly failed to treat Alzheimer’s disease (AD), suggesting that Aβ may not be the optimal target for treating AD. The evaluation of Aβ, tau, and neurodegenerative (A/T/N) biomarkers has been proposed for classifying AD. However, it remains unclear whether disturbances in each arm of the A/T/N framework contribute equally throughout the progression of AD. Here, using the random forest machine learning method to analyze participants in the Alzheimer’s Disease Neuroimaging Initiative dataset, we show that A/T/N biomarkers show varying importance in predicting AD development, with elevated biomarkers of Aβ …


A Fully-Flexible Solution-Processed Autonomous Glucose Indicator, Jonathan D. Yuen, Ankit Baingane, Qumrul Hasan, Lisa C. Shriver-Lake, Scott A. Walper, Daniel Zabetakis, Joyce C. Breger, David A. Stenger, Gymama Slaughter Jan 2019

A Fully-Flexible Solution-Processed Autonomous Glucose Indicator, Jonathan D. Yuen, Ankit Baingane, Qumrul Hasan, Lisa C. Shriver-Lake, Scott A. Walper, Daniel Zabetakis, Joyce C. Breger, David A. Stenger, Gymama Slaughter

Bioelectrics Publications

We present the first demonstration of a fully-flexible, self-powered glucose indicator system that synergizes two flexible electronic technologies: a flexible self-powering unit in the form of a biofuel cell, with a flexible electronic device - a circuit-board decal fabricated with biocompatible microbial nanocellulose. Our proof-of-concept device, comprising an enzymatic glucose fuel cell, glucose sensor and a LED indicator, does not require additional electronic equipment for detection or verification; and the entire structure collapses into a microns-thin, self-adhering, single-centimeter-square decal, weighing less than 40 mg. The flexible glucose indicator system continuously operates a light emitting diode (LED) through a capacitive charge/discharge …


Preferentially Selecting Cellular Metabolism And Improving Productivity By Controlling Do And Pco2, Jiayi Zhang, Ryan Cassidy, Mark Emanuele, Gonzalo Milet, Lada Laenen May 2016

Preferentially Selecting Cellular Metabolism And Improving Productivity By Controlling Do And Pco2, Jiayi Zhang, Ryan Cassidy, Mark Emanuele, Gonzalo Milet, Lada Laenen

Cell Culture Engineering XV

Cells utilize glucose as their main resource for deriving energy through ATP production. The quantity of ATP generated depends on the metabolic pathways that are employed, aerobic glucose metabolism or anaerobic glucose metabolism. Using our bench top bioreactor model, we have shown these two metabolic pathways can be preferentially selected by controlling the desired cell culture DO and pCO2, and productivity was increased as a result. The DO and pCO2 controlling strategy was implemented in at-scale bioreactors and yielded the expected metabolic and productivity outcome


Atypical Glycolysis In Clostridium Thermocellum, Jilai Zhou, Daniel G. Olson, D. Aaron Argyros, Yu Deng, Walter M. Van Gulik, Johannes P. Van Dijken, Lee R. Lynd Feb 2013

Atypical Glycolysis In Clostridium Thermocellum, Jilai Zhou, Daniel G. Olson, D. Aaron Argyros, Yu Deng, Walter M. Van Gulik, Johannes P. Van Dijken, Lee R. Lynd

Dartmouth Scholarship

Cofactor specificities of glycolytic enzymes in Clostridium thermocellum were studied with cellobiose-grown cells from batch cultures. Intracellular glucose was phosphorylated by glucokinase using GTP rather than ATP. Although phosphofructokinase typically uses ATP as a phosphoryl donor, we found only pyrophosphate (PPi)-linked activity. Phosphoglycerate kinase used both GDP and ADP as phosphoryl acceptors. In agreement with the absence of a pyruvate kinase sequence in the C. thermocellum genome, no activity of this enzyme could be detected. Also, the annotated pyruvate phosphate dikinase (ppdk) is not crucial for the generation of pyruvate from phosphoenolpyruvate (PEP), as deletion of the ppdk gene did …


Sodium Hydroxide Pretreatment And Enzymatic Hydrolysis Of Coastal Bermuda Grass, Ziyu Wang, Deepak R. Keshwani, Arthur P. Redding, Jay J. Cheng Jan 2010

Sodium Hydroxide Pretreatment And Enzymatic Hydrolysis Of Coastal Bermuda Grass, Ziyu Wang, Deepak R. Keshwani, Arthur P. Redding, Jay J. Cheng

Biological Systems Engineering: Papers and Publications

Coastal Bermuda grass was pretreated with NaOH at concentrations from 0.5% to 3% (w/v) for a residence time from 15 to 90 min at 121 °C. The pretreatments were evaluated based on total lignin removal and production of total reducing sugars, glucose and xylose from enzymatic hydrolysis of the pretreated biomass. Up to 86% lignin removal was observed. The optimal NaOH pretreatment conditions at 121 °C for total reducing sugars production as well as glucose and xylose yields are 15 min and 0.75% NaOH. Under these optimal pretreatment conditions, total reducing sugars yield was about 71% of the theoretical maximum, …