Open Access. Powered by Scholars. Published by Universities.®

Biomedical Engineering and Bioengineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Glucose

Discipline
Institution
Publication Year
Publication
Publication Type

Articles 1 - 21 of 21

Full-Text Articles in Biomedical Engineering and Bioengineering

Borophene And Graphene For Non-Enzymatic Biosensor- Ab-Initio Study, Omar A. Ismail Dec 2023

Borophene And Graphene For Non-Enzymatic Biosensor- Ab-Initio Study, Omar A. Ismail

Theses and Dissertations

Non-enzymatic glucose sensing holds promise to overcome limitations associated with glucose oxidase, such as oxygen dependence and short shelf life. This study explores the potential sensing capabilities of borophene and graphene through direct interaction with various compounds, including β-glucose, uric acid, ascorbic acid, fructose, and acetaminophen. Using Density Functional Theory (DFT), we calculated binding energies and the respective Density of States (DOS) for these adsorbates on both graphene and borophene surfaces. Preliminary results suggest that borophene might exhibit nearly twice the affinity for β-glucose compared to graphene. Moreover, the calculated Density of States reveals distinct distortions in the electronic states …


Ultrasensitive Tapered Optical Fiber Refractive Index, Erem Ujah, Meimei Lai, Gymama Slaughter Jan 2023

Ultrasensitive Tapered Optical Fiber Refractive Index, Erem Ujah, Meimei Lai, Gymama Slaughter

Electrical & Computer Engineering Faculty Publications

Refractive index (RI) sensors are of great interest for label-free optical biosensing. A tapered optical fiber (TOF) RI sensor with micron-sized waist diameters can dramatically enhance sensor sensitivity by reducing the mode volume over a long distance. Here, a simple and fast method is used to fabricate highly sensitive refractive index sensors based on localized surface plasmon resonance (LSPR). Two TOFs (l = 5 mm) with waist diameters of 5 µm and 12 µm demonstrated sensitivity enhancement at λ = 1559 nm for glucose sensing (5-45 wt%) at room temperature. The optical power transmission decreased with increasing glucose concentration due …


Predicting Insulin Pump Therapy Settings, Riccardo L. Ferraro, David Grijalva, Alex Trahan Sep 2022

Predicting Insulin Pump Therapy Settings, Riccardo L. Ferraro, David Grijalva, Alex Trahan

SMU Data Science Review

Millions of people live with diabetes worldwide [7]. To mitigate some of the many symptoms associated with diabetes, an estimated 350,000 people in the United States rely on insulin pumps [17]. For many of these people, how effectively their insulin pump performs is the difference between sleeping through the night and a life threatening emergency treatment at a hospital. Three programmed insulin pump therapy settings governing effective insulin pump function are: Basal Rate (BR), Insulin Sensitivity Factor (ISF), and Carbohydrate Ratio (ICR). For many people using insulin pumps, these therapy settings are often not correct, given their physiological needs. While …


Cu And Ni Co-Sputtered Heteroatomic Thin Film For Enhanced Nonenzymatic Glucose Detection, Brianna Barbee, Baleeswaraiah Muchharla, Adetayo Adedeji, Abdennaceur Karoui, Kishor Kumar Sadasivuni, Mizaj Shabil Sha, Aboubakr M. Abdullah4, Gymama Slaughter, Bijandra Kumar May 2022

Cu And Ni Co-Sputtered Heteroatomic Thin Film For Enhanced Nonenzymatic Glucose Detection, Brianna Barbee, Baleeswaraiah Muchharla, Adetayo Adedeji, Abdennaceur Karoui, Kishor Kumar Sadasivuni, Mizaj Shabil Sha, Aboubakr M. Abdullah4, Gymama Slaughter, Bijandra Kumar

Bioelectrics Publications

In this work, we report a wafer-scale and chemical-free fabrication of nickel (Ni) and copper (Cu) heteroatomic Cu–Ni thin films using RF magnetron sputtering technique for non-enzymatic glucose sensing application. The as-prepared wafer-scale Cu–Ni thin films exhibits excellent electrocatalytic activity toward glucose oxidation with a 1.86 μM detection limit in the range of 0.01 mM to 20 mM range. The Cu–Ni film shows 1.3- and 5.4-times higher glucose oxidation activity in comparison to the Cu and Ni electrodes, respectively. The improved electrocatalytic activity is attributed to the synergistic effect of the bimetallic catalyst and high density of grain boundaries. The …


3-In-1 Medical Lancet, Jonathan J. Panella, Gage Vogtlin, Marissa Koski, Benjamin Neyland Dec 2021

3-In-1 Medical Lancet, Jonathan J. Panella, Gage Vogtlin, Marissa Koski, Benjamin Neyland

Mechanical Engineering

First responders need a quick, sterile, and convenient way to sample blood for glucose testing because glucose levels are a vital metric in assessing time-critical emergency situations. The blood sampling process consists of pre-sterilizing the sample site on the skin with an alcohol pad, pricking the skin with a lancet, and lastly, after sampling, putting a bandage over the prick site. The scope of this project is to design a device which integrates and streamlines the use of the three sub-processes (sterilization, lancing, and bandaging) while upholding the necessary requirements of a single-use medical device and considering other factors which …


A Novel Non-Enzymatic Glucose Biofuel Cell With Mobile Glucose Sensing, Ankit Baingane Aug 2020

A Novel Non-Enzymatic Glucose Biofuel Cell With Mobile Glucose Sensing, Ankit Baingane

Electrical & Computer Engineering Theses & Dissertations

Herein, we report a novel non-enzymatic glucose biofuel cell with mobile glucose sensing. We characterized the power generation and biosensing capabilities in presence of glucose analyte. This system was developed using a non-enzymatic glucose biofuel cell consisting of colloidal platinum coated gold microwire (Au-co-Pt) employed as an anode and the cathode which was constructed using a Gas diffusion electrode (GDE) with a platinum catalyst. The non-enzymatic glucose biofuel cell produced a maximum open circuit voltage of 0.54 V and delivered and a maximum short circuit current density of 1.6 mA/cm2 with a peak power density of 0.226 mW/cm2 at a …


Β-Amyloid And Tau Drive Early Alzheimer's Disease Decline While Glucose Hypometabolism Drives Late Decline, Tyler C. Hammond, Xin Xing, Chris Wang, David Ma, Kwangsik Nho, Paul K. Crane, Fanny Elahi, David A. Ziegler, Gongbo Liang, Qiang Cheng, Lucille M. Yanckello, Nathan Jacobs, Ai-Ling Lin Jul 2020

Β-Amyloid And Tau Drive Early Alzheimer's Disease Decline While Glucose Hypometabolism Drives Late Decline, Tyler C. Hammond, Xin Xing, Chris Wang, David Ma, Kwangsik Nho, Paul K. Crane, Fanny Elahi, David A. Ziegler, Gongbo Liang, Qiang Cheng, Lucille M. Yanckello, Nathan Jacobs, Ai-Ling Lin

Sanders-Brown Center on Aging Faculty Publications

Clinical trials focusing on therapeutic candidates that modify β-amyloid (Aβ) have repeatedly failed to treat Alzheimer’s disease (AD), suggesting that Aβ may not be the optimal target for treating AD. The evaluation of Aβ, tau, and neurodegenerative (A/T/N) biomarkers has been proposed for classifying AD. However, it remains unclear whether disturbances in each arm of the A/T/N framework contribute equally throughout the progression of AD. Here, using the random forest machine learning method to analyze participants in the Alzheimer’s Disease Neuroimaging Initiative dataset, we show that A/T/N biomarkers show varying importance in predicting AD development, with elevated biomarkers of Aβ …


Adipose Tissue Engineering: A Therapeutic Strategy For The Treatment Of Obesity And Glucose Intolerance, Michael A. Hendley Oct 2019

Adipose Tissue Engineering: A Therapeutic Strategy For The Treatment Of Obesity And Glucose Intolerance, Michael A. Hendley

Theses and Dissertations

Despite available treatment options, the number of people afflicted by type 2 diabetes has steadily risen for decades. Nearly 90% of the diabetic population also suffers from obesity and the link between the two diseases is undeniable. Characterized by rapid expansion of the adipose tissue and improper lipid storage, the mishandling of lipids by adipose tissue promotes the diabetic state. Excess lipids, unable to be properly stored, build up in peripheral tissues promoting insulin resistance and type 2 diabetes. Therapeutic strategies designed to address adipose tissue lipid handling could represent a promising treatment strategy for obesity associated type 2 diabetes. …


A Fully-Flexible Solution-Processed Autonomous Glucose Indicator, Jonathan D. Yuen, Ankit Baingane, Qumrul Hasan, Lisa C. Shriver-Lake, Scott A. Walper, Daniel Zabetakis, Joyce C. Breger, David A. Stenger, Gymama Slaughter Jan 2019

A Fully-Flexible Solution-Processed Autonomous Glucose Indicator, Jonathan D. Yuen, Ankit Baingane, Qumrul Hasan, Lisa C. Shriver-Lake, Scott A. Walper, Daniel Zabetakis, Joyce C. Breger, David A. Stenger, Gymama Slaughter

Bioelectrics Publications

We present the first demonstration of a fully-flexible, self-powered glucose indicator system that synergizes two flexible electronic technologies: a flexible self-powering unit in the form of a biofuel cell, with a flexible electronic device - a circuit-board decal fabricated with biocompatible microbial nanocellulose. Our proof-of-concept device, comprising an enzymatic glucose fuel cell, glucose sensor and a LED indicator, does not require additional electronic equipment for detection or verification; and the entire structure collapses into a microns-thin, self-adhering, single-centimeter-square decal, weighing less than 40 mg. The flexible glucose indicator system continuously operates a light emitting diode (LED) through a capacitive charge/discharge …


Development Of A Nonlinear Model For The Prediction Of Response Times Of Glucose Affinity Sensors Using Concanavalin A And Dextran And The Development Of A Differential Osmotic Glucose Affinity Sensor, Louis G. Reis Jan 2017

Development Of A Nonlinear Model For The Prediction Of Response Times Of Glucose Affinity Sensors Using Concanavalin A And Dextran And The Development Of A Differential Osmotic Glucose Affinity Sensor, Louis G. Reis

Doctoral Dissertations

With the increasing prevalence of diabetes in the United States and worldwide, blood glucose monitoring must be accurate and reliable. Current enzymatic sensors have numerous disadvantages that make them unreliable and unfavorable among patients. Recent research in glucose affinity sensors correct some of the problems that enzymatic sensors experience. Dextran and concanavalin A are two of the more common components used in glucose affinity sensors. When these sensors were first explored, a model was derived to predict the response time of a glucose affinity sensor using concanavalin A and dextran. However, the model assumed the system was linear and fell …


Design And Basic Verification Of A Discrete Event Simulator For Glucose Metabolism In Human Beings, Elizabeth Andrews Dec 2016

Design And Basic Verification Of A Discrete Event Simulator For Glucose Metabolism In Human Beings, Elizabeth Andrews

Theses and Dissertations

This thesis describes the design and basic verification of a discrete event simulator for glucose metabolism in human beings. The simulator implements the glucose metabolism related behavior of various organs in the human body and tracks the blood plasma glucose level as the human body goes through a sequence of diet and exercise events. The simulator can mimic insulin resistance in various organs as well as the loss of insulin production in the pancreas and the adverse impact of these changes on the metabolic behavior of various organs. Thus, the simulator can serve as a model for people with diabetes. …


Preferentially Selecting Cellular Metabolism And Improving Productivity By Controlling Do And Pco2, Jiayi Zhang, Ryan Cassidy, Mark Emanuele, Gonzalo Milet, Lada Laenen May 2016

Preferentially Selecting Cellular Metabolism And Improving Productivity By Controlling Do And Pco2, Jiayi Zhang, Ryan Cassidy, Mark Emanuele, Gonzalo Milet, Lada Laenen

Cell Culture Engineering XV

Cells utilize glucose as their main resource for deriving energy through ATP production. The quantity of ATP generated depends on the metabolic pathways that are employed, aerobic glucose metabolism or anaerobic glucose metabolism. Using our bench top bioreactor model, we have shown these two metabolic pathways can be preferentially selected by controlling the desired cell culture DO and pCO2, and productivity was increased as a result. The DO and pCO2 controlling strategy was implemented in at-scale bioreactors and yielded the expected metabolic and productivity outcome


Comparison Of Regular Ringer's Solution And Glucose Ringer's Solution On The Longevity Of The Hirudo Medicinalis' Retzius Cell, Nicole Arielle Peretti Mar 2015

Comparison Of Regular Ringer's Solution And Glucose Ringer's Solution On The Longevity Of The Hirudo Medicinalis' Retzius Cell, Nicole Arielle Peretti

Master's Theses

In 1882, Sydney Ringer, a professor of medicine at University College in London, experimented with the frog ventricle to better understand how each constituent of blood influences contraction. The ultimate goal was to create an artificial circulating fluid to use for the perfusion of isolated organs, in this case, a frog heart. Today, Ringer’s solution is still used in research for physiological studies requiring the survival and maintenance of specimens outside of their host bodies. One such example is the use of medicinal leech ganglia for electrophysiological measurements. In this thesis, I am comparing two Ringer’s solutions, original versus added …


Standardizing The Collection And Measurement Of Glucose In Exhaled Breath And Its Relationship To Blood Glucose Concentrations, Mark Hamilton Jul 2014

Standardizing The Collection And Measurement Of Glucose In Exhaled Breath And Its Relationship To Blood Glucose Concentrations, Mark Hamilton

Open Access Theses

Blood glucose level control (glycemic control) is crucial in diabetes. Limitations in current commercially available monitoring devices include causing patient pain leading to poor blood glucose level management. The development of a non-invasive measurement system may lead to improved patient glycemic control, reducing unwanted side-effects and complications of poor blood glucose level maintenance.

This work explores the use of glucose within exhaled breath in attempt to establish an indirect method of blood glucose level measurement. Specifically, exhaled breath condensate (EBC) is examined. A breath condensing unit was designed to measure the temperature of the system, flow rate, volume of expired …


Implantable Biosensors For Physiologic Status Monitoring During Hemorrhage, Christian Kotanen Aug 2013

Implantable Biosensors For Physiologic Status Monitoring During Hemorrhage, Christian Kotanen

All Dissertations

Trauma diagnostics and management are major aims of research for implantable amperometric enzyme biosensor technology. Biosensors are capable of monitoring metabolic variables in a minimally invasive manner and have great potential to augment current wireless vital sign monitoring technologies in order to make a more robust physiologic status monitoring platform. The dual responsive Electrochemical Cell-on-a-Chip Microdisc Electrode Array (ECC MDEA 5037) is a recently developed electrochemical transducer for use in a wireless, implantable biosensor system for the continuous measurement of interstitial glucose and lactate. Hyperglycemia arising from insulin resistance and hyperlactatemia arising from anaerobic metabolism both occur following trauma and …


Atypical Glycolysis In Clostridium Thermocellum, Jilai Zhou, Daniel G. Olson, D. Aaron Argyros, Yu Deng, Walter M. Van Gulik, Johannes P. Van Dijken, Lee R. Lynd Feb 2013

Atypical Glycolysis In Clostridium Thermocellum, Jilai Zhou, Daniel G. Olson, D. Aaron Argyros, Yu Deng, Walter M. Van Gulik, Johannes P. Van Dijken, Lee R. Lynd

Dartmouth Scholarship

Cofactor specificities of glycolytic enzymes in Clostridium thermocellum were studied with cellobiose-grown cells from batch cultures. Intracellular glucose was phosphorylated by glucokinase using GTP rather than ATP. Although phosphofructokinase typically uses ATP as a phosphoryl donor, we found only pyrophosphate (PPi)-linked activity. Phosphoglycerate kinase used both GDP and ADP as phosphoryl acceptors. In agreement with the absence of a pyruvate kinase sequence in the C. thermocellum genome, no activity of this enzyme could be detected. Also, the annotated pyruvate phosphate dikinase (ppdk) is not crucial for the generation of pyruvate from phosphoenolpyruvate (PEP), as deletion of the ppdk gene did …


Vapor-Liquid-Solid(Vls) Grown Silica (Siox) Nanowires As The Interface For Biorecognition Molecules In Biosensors, Eduardo Murphy-Pérez Jan 2013

Vapor-Liquid-Solid(Vls) Grown Silica (Siox) Nanowires As The Interface For Biorecognition Molecules In Biosensors, Eduardo Murphy-Pérez

USF Tampa Graduate Theses and Dissertations

SiOx nanowires grown through the VLS mechanism were electrophoretically deposited on top of Au electrodes. GOx was immobilized using APTES and the EDC-NHS chemistry. Cyclic Voltammetry was used as the method to characterize the electrodes through their processing steps, and CV was also used to detect glucose in a PBS based solution. Ferro-Ferri Cyanide couple was used as the mediator.


Glucose Biosensor Using Electrospun Mn2o3-Ag Nanofibers, Shan Huang Aug 2011

Glucose Biosensor Using Electrospun Mn2o3-Ag Nanofibers, Shan Huang

Master's Theses

The highly porous Mn2O3-Ag nanofibers were fabricated by a facile two-step procedure (electrospinning and calcination) and then employed as the immobilization matrix for glucose oxidase (GOD) to construct an amperometric glucose biosensor. A notable enhancement of direct electron transfer between GOD and the electrode is observed at the Mn2O3-Ag-GOD modified electrode with a fast electron transfer rate constant. The biosensor also shows fast response to glucose, high sensitivity (40.60 μA×mM-1×cm-2), low detection limit (1.73 µM at S/N=3), low Km,app value and excellent selectivity. These results indicate that …


Sodium Hydroxide Pretreatment And Enzymatic Hydrolysis Of Coastal Bermuda Grass, Ziyu Wang, Deepak R. Keshwani, Arthur P. Redding, Jay J. Cheng Jan 2010

Sodium Hydroxide Pretreatment And Enzymatic Hydrolysis Of Coastal Bermuda Grass, Ziyu Wang, Deepak R. Keshwani, Arthur P. Redding, Jay J. Cheng

Biological Systems Engineering: Papers and Publications

Coastal Bermuda grass was pretreated with NaOH at concentrations from 0.5% to 3% (w/v) for a residence time from 15 to 90 min at 121 °C. The pretreatments were evaluated based on total lignin removal and production of total reducing sugars, glucose and xylose from enzymatic hydrolysis of the pretreated biomass. Up to 86% lignin removal was observed. The optimal NaOH pretreatment conditions at 121 °C for total reducing sugars production as well as glucose and xylose yields are 15 min and 0.75% NaOH. Under these optimal pretreatment conditions, total reducing sugars yield was about 71% of the theoretical maximum, …


Modeling, Design, And Validation Of Fluorescent Spherical Enzymatic Glucose Microsensors Using Nanoengineered Polyelectrolyte Coatings, Jonathan Quincy Brown Jul 2005

Modeling, Design, And Validation Of Fluorescent Spherical Enzymatic Glucose Microsensors Using Nanoengineered Polyelectrolyte Coatings, Jonathan Quincy Brown

Doctoral Dissertations

In this dissertation, the modeling, design, and function of fluorescent spherical enzymatic microsensors for minimally-invasive diabetic monitoring are described. The devices reported herein are novel and their experimental construction and theoretical analysis have not been previously reported, thus laying the foundation for an intensive set of studies. These sensors are based on the encapsulation of an enzymatic fluorescent assay for glucose within hydrogel alginate microspheres with diameters on the order of tens of microns, which are of the appropriate size for intradermal implantation. A novel feature of these sensors is the use of multifunctional nanoengineered ultrathin multilayer polyelectrolyte coatings on …


Rational Pathway Engineering Of Type I Fatty Acid Synthase Allows The Biosynthesis Of Triacetic Acid Lactone From D-Glucose In Vivo, Wenjuan Zha, Zengyi Shao, John W. Frost, Huimin Zhao Jan 2004

Rational Pathway Engineering Of Type I Fatty Acid Synthase Allows The Biosynthesis Of Triacetic Acid Lactone From D-Glucose In Vivo, Wenjuan Zha, Zengyi Shao, John W. Frost, Huimin Zhao

Zengyi Shao

Metabolic pathway engineering is a powerful tool to synthesize structurally diverse and complex chemicals via genetic manipulation of multistep catalytic systems involved in cell metabolism. Here, we report the rational design of a fatty acid biosynthetic pathway, Brevibacterium ammoniagenes fatty acid synthase B (FAS-B), that allows the microbial synthesis of triacetic acid lactone (TAL) from an inexpensive feedstock, D-glucose. TAL can be chemically converted to phloroglucinol, which is a core structure for the synthesis of various high value bioactive compounds and energetic compounds such as 1,3,5-triamino-2,4,6-trinitrobenzene (TATB). Synthesis of phloroglucinol from d-glucose using this combined biological and chemical synthesis may …