Open Access. Powered by Scholars. Published by Universities.®

Biomedical Engineering and Bioengineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Series

Chemical Engineering

Institution
Keyword
Publication Year
Publication

Articles 1 - 30 of 278

Full-Text Articles in Biomedical Engineering and Bioengineering

Surface Antibody Changes Protein Corona Both In Human And Mouse Serum But Not Final Opsonization And Elimination Of Targeted Polymeric Nanoparticles, Sara Capolla, Federico Colombo, Luca De Maso, Prisca Mauro, Paolo Bertoncin, Thilo Kähne, Alexander Engler, Luis Núñez, Gustavo Larsen, Et Al. Dec 2023

Surface Antibody Changes Protein Corona Both In Human And Mouse Serum But Not Final Opsonization And Elimination Of Targeted Polymeric Nanoparticles, Sara Capolla, Federico Colombo, Luca De Maso, Prisca Mauro, Paolo Bertoncin, Thilo Kähne, Alexander Engler, Luis Núñez, Gustavo Larsen, Et Al.

Department of Chemical and Biomolecular Engineering: Faculty Publications

Background: Nanoparticles represent one of the most important innovations in the medical field. Among nanocarriers, polymeric nanoparticles (PNPs) attracted much attention due to their biodegradability, biocompatibility, and capacity to increase efficacy and safety of encapsulated drugs. Another important improvement in the use of nanoparticles as delivery systems is the conjugation of a targeting agent that enables the nanoparticles to accumulate in a specific tissue. Despite these advantages, the clinical translation of therapeutic approaches based on nanoparticles is prevented by their interactions with blood proteins. In fact, the so-formed protein corona (PC) drastically alters the biological identity of the particles. Adsorbed …


Molecular Separation By Using Active And Passive Microfluidic Chip Designs: A Comprehensive Review, A. Ebrahimi, K. Icoz, R. Didarian, C.-H. Shih, A. Akpek, Berivan Cecen, Sabanci A. Bal-Ozturk, K. Güleç, Y.-C.E Li, S. Shih, B. Sirma Tarim, H.C. Tekin, E. Alarçin, H. Ghorbanpoor, C. Özel, A. Eker Sarıboyacı, Guzel F. Dogan, N. Bassous, S.R. Shin, H. Avci Dec 2023

Molecular Separation By Using Active And Passive Microfluidic Chip Designs: A Comprehensive Review, A. Ebrahimi, K. Icoz, R. Didarian, C.-H. Shih, A. Akpek, Berivan Cecen, Sabanci A. Bal-Ozturk, K. Güleç, Y.-C.E Li, S. Shih, B. Sirma Tarim, H.C. Tekin, E. Alarçin, H. Ghorbanpoor, C. Özel, A. Eker Sarıboyacı, Guzel F. Dogan, N. Bassous, S.R. Shin, H. Avci

Henry M. Rowan College of Engineering Faculty Scholarship

Separation and identification of molecules and biomolecules such as nucleic acids, proteins, and polysaccharides from complex fluids are known to be important due to unmet needs in various applications. Generally, many different separation techniques, including chromatography, electrophoresis, and magnetophoresis, have been developed to identify the target molecules precisely. However, these techniques are expensive and time consuming. “Lab-on-a-chip” systems with low cost per device, quick analysis capabilities, and minimal sample consumption seem to be ideal candidates for separating particles, cells, blood samples, and molecules. From this perspective, different microfluidic-based techniques have been extensively developed in the past two decades to separate …


Engineering Multifunctional Adhesive Hydrogel Patches For Biomedical Applications, Aishik Chakraborty, Shana Alexander, Wei Luo, Narisse Al-Salam, Mia Van Oirschot, Sudhir H. Ranganath, Subrata Chakrabarti, Arghya Paul Aug 2023

Engineering Multifunctional Adhesive Hydrogel Patches For Biomedical Applications, Aishik Chakraborty, Shana Alexander, Wei Luo, Narisse Al-Salam, Mia Van Oirschot, Sudhir H. Ranganath, Subrata Chakrabarti, Arghya Paul

Chemical and Biochemical Engineering Publications

Traditional patches, such as sticking plaster or acrylic adhesives used for over a hundred years, lack functionality. To address this issue of poor functionality, adhesive hydrogel patches have emerged as an efficient bioactive multifunctional alternative. Hydrogels are three-dimensional, water-swellable, and polymeric materials closely resembling the native tissue architecture. The physicochemical properties of hydrogels can be modified easily, allowing them to be suitable for various biomedical applications. Moreover, adhesive properties can be imparted to hydrogels through physicochemical manipulations, making them ideal candidates for supplementing or replacing traditional sticking plaster. As a result, sticky hydrogel patches are widely used for transdermal drug …


The Plastics Collection Reference Packet, Special Collections Research Center Jul 2023

The Plastics Collection Reference Packet, Special Collections Research Center

Special Collections Research Center

This reference packet is an informational tool to support further research into the history of plastics—whether interested in companies, individuals within the plastics industry's history, historical plastics materials, essays, and more. All content featured within this packet was previously published on the former plastics.syr.edu website as part of a Syracuse University Libraries and Special Collections Research Center (SCRC) partnership established in 2007 with the Plastics Pioneers Association (PPA)—an association of plastics industry professionals interested in preserving the plastics industry's past.


Protocol To Develop A Synthetic Biology Toolkit For The Non-Model Bacterium R. Palustris, Mark Kathol, Cheryl Immethun, Rajib Saha Jun 2023

Protocol To Develop A Synthetic Biology Toolkit For The Non-Model Bacterium R. Palustris, Mark Kathol, Cheryl Immethun, Rajib Saha

Department of Chemical and Biomolecular Engineering: Faculty Publications

Numerous biology tools are developed to work for model organisms, which, however, do not work effectively in non-model organisms. Here, we present a protocol for developing a synthetic biology toolkit for Rhodopseudomonas palustris CGA009, a non-model bacterium with unique metabolic properties. We describe steps for introducing and characterizing biological devices in nonmodel bacteria, such as the utilization of fluorescence markers and RT-qPCR. This protocol may also be applicable for other non-model organisms. For complete details on the use and execution of this protocol, please refer to Immethun et al..1


S8e10: How Can Nature-Inspired Engineering Improve Human Health?, Ron Lisnet, Caitlin Howell May 2023

S8e10: How Can Nature-Inspired Engineering Improve Human Health?, Ron Lisnet, Caitlin Howell

The Maine Question

Antibiotic resistance has become a growing problem in the treatment of bacterial infections. In addition to minimizing or negating the effects of existing medicine, these antibiotic-resistant bacteria, or “superbugs,” are mutating faster than the development of new remedies.

Caitlin Howell, University of Maine associate professor of biomedical engineering, is working on new tools that take notes from nature to combat antibiotic-resistant bacteria. Similar to the way in which the human body keeps balance with its own bacterial populations, Howell’s devices use nontoxic, non-invasive surface-based technology to trap bacteria and prevent them from spreading.

In this episode of “The Maine Question” …


Mitochondrial Complex Iii Bypass Complex I To Induce Ros In Gpr17 Signaling Activation In Gbm, Sana Kari, Jeyalakshmi Kandhavelu, Akshaya Murugesan, Ramesh Thiyagarajan, Srivatsan Kidambi, Meenakshisundaram Kandhavelu Apr 2023

Mitochondrial Complex Iii Bypass Complex I To Induce Ros In Gpr17 Signaling Activation In Gbm, Sana Kari, Jeyalakshmi Kandhavelu, Akshaya Murugesan, Ramesh Thiyagarajan, Srivatsan Kidambi, Meenakshisundaram Kandhavelu

Department of Chemical and Biomolecular Engineering: Faculty Publications

Guanine nucleotide binding protein (G protein) coupled receptor 17 (GPR17) plays crucial role in Glioblastoma multiforme (GBM) cell signaling and is primarily associated with reactive oxidative species (ROS) production and cell death. However, the underlying mechanisms by which GPR17 regulates ROS level and mitochondrial electron transport chain (ETC) complexes are still unknown. Here, we investigate the novel link between the GPR17 receptor and ETC complex I and III in regulating level of intracellular ROS (ROSi) in GBM using pharmacological inhibitors and gene expression profiling. Incubation of 1321N1 GBM cells with ETC I inhibitor and GPR17 agonist decreased the ROS level, …


Protocol To Engineer Nanofilms Embedded Lipid Nanoparticles For Controlled And Targeted Drug Delivery (Nectar), Rashi Porwal, Stephen L. Hayward, Srivatsan Kidambi Mar 2023

Protocol To Engineer Nanofilms Embedded Lipid Nanoparticles For Controlled And Targeted Drug Delivery (Nectar), Rashi Porwal, Stephen L. Hayward, Srivatsan Kidambi

Department of Chemical and Biomolecular Engineering: Faculty Publications

We present a protocol to engineer a substrate-mediated delivery platform comprising hyaluronic acid-coated lipid nanoparticles (HALNPs) embedded into polyelectrolyte multilayer (PEM) films. This platform allows controlled spatiotemporal release of lipid nanoparticles (LNP) by embedding them within the polyelectrolyte multilayer films matrix. HALNP conjugate with antibodies also adds the ability for targeted delivery. The use of LNP enables this platform to encapsulate both hydrophobic and hydrophilic drugs. This platform can easily be reproduced and utilized for various biomedical drug delivery applications. For complete details on the use and execution of this protocol, please refer to Hayward et al. (2015, 2016a, 2016b), …


Computational Discovery Of Active And Selective Metal- Nitrogen-Graphene Catalysts For Electrooxidation Of Water To H2O2, Payal Chaudhary, Iman Evazzade, Rodion Belosludov,, Vitaly Alexandrov Mar 2023

Computational Discovery Of Active And Selective Metal- Nitrogen-Graphene Catalysts For Electrooxidation Of Water To H2O2, Payal Chaudhary, Iman Evazzade, Rodion Belosludov,, Vitaly Alexandrov

Department of Chemical and Biomolecular Engineering: Faculty Publications

A direct electrosynthesis of H2O2 from either O2 or H2O is an attractive strategy to replace the energy-intensive industrial anthraquinone process. Two-electron water oxidation reaction (2e-WOR) offers several advantages over the oxygen reduction reaction such as better mass transfer due to the absence of gasphase reactants. However, 2e-WOR is a more challenging and less studied process with only a handful of metal oxides exhibiting reasonable activity/selectivity properties. Herein, we employ density-functional-theory calculations to screen a variety of metal-nitrogen-graphene structures for 2e-WOR. As a consequence of scaling between the adsorption energies of reaction intermediates, we …


An Older Diabetes-Induced Mice Model For Studying Skin Wound Healing, Carlos Poblete Jara, Guilherme Nogueira, Joseane Morari, Thaís Paulino Do Prado, Renan De Medeiros Bezerra, Lício A. Velloso, William Velander, Eliana Pereira De Araújo Feb 2023

An Older Diabetes-Induced Mice Model For Studying Skin Wound Healing, Carlos Poblete Jara, Guilherme Nogueira, Joseane Morari, Thaís Paulino Do Prado, Renan De Medeiros Bezerra, Lício A. Velloso, William Velander, Eliana Pereira De Araújo

Department of Chemical and Biomolecular Engineering: Faculty Publications

Advances in wound treatment depend on the availability of animal models that reflect key aspects of human wound healing physiology. To this date, the accepted mouse models do not reflect defects in the healing process for chronic wounds that are associated with type two diabetic skin ulcers. The long term, systemic physiologic stress that occurs in middle aged or older Type 2 diabetes patients is difficult to simulate in preclinical animal model. We have strived to incorporate the essential elements of this stress in a manageable mouse model: long term metabolic stress from obesity to include the effects of middle …


Advancing Ionomer Design To Boost Interfacial And Thin-Film Proton Conductivity Via Styrene-Calix[4]Arene-Based Ionomers, Shyambo Chatterjee, Oghenetega Allen Obewhere, Ehsan Zamani, Rajesh Keloth, Seefat Farzin, Martha D. Morton, Anandakumar Sarella, Shudipto Konika Dishari Feb 2023

Advancing Ionomer Design To Boost Interfacial And Thin-Film Proton Conductivity Via Styrene-Calix[4]Arene-Based Ionomers, Shyambo Chatterjee, Oghenetega Allen Obewhere, Ehsan Zamani, Rajesh Keloth, Seefat Farzin, Martha D. Morton, Anandakumar Sarella, Shudipto Konika Dishari

Department of Chemical and Biomolecular Engineering: Faculty Publications

Sub-micrometer-thick ion-conducting polymer (ionomer) layers often suffer from poor ionic conductivity at the substrate/catalyst interface. The weak proton conductivity makes the electrochemical reaction at the cathode of proton-exchange-membrane fuel cells sluggish. To address this, here we report on a class of polystyrene-based ionomers having sub-nanometer-sized, sulfonated macrocyclic calix[4]arene-based pendants (PS-calix). In films with thickness comparable to that of ionomer-based binder layers, the conductivity of PS-calix film (∼41 mS/cm) is ∼13 times higher than that of the current state-of-the-art ionomer, Nafion. We observe a similar improvement in proton conductivity when PS-calix interfaces with Pt nanoparticles, demonstrating the potential of PS-calix in …


Coupling Atr-Ftir Spectroscopy With Multivariate Analysis For Polymers Manufacturing And Control Of Polymers’ Molecular Weight, Tung Nguyen, Ahmad Arabi Shamsabadi, Mona Bavarian Jan 2023

Coupling Atr-Ftir Spectroscopy With Multivariate Analysis For Polymers Manufacturing And Control Of Polymers’ Molecular Weight, Tung Nguyen, Ahmad Arabi Shamsabadi, Mona Bavarian

Department of Chemical and Biomolecular Engineering: Faculty Publications

Acrylate-based polymers are commonly used in the chemical industry. Consistent manufacturing of these polymers with the help of Process Analytical Technology (PAT) is very desirable. The capability of monitoring polymers’ molecular weight in real-time reduces operation time and eliminates the frequent samplings needed for quality control. Herein, molecular weight (Mw) of glycidyl methacrylate-co-methyl methacrylate (GMA-co- MMA) copolymer was monitored in real-time using mid-infrared ATR-FTIR spectroscopy. The Principal Component Analysis (PCA) and Partial Least Square (PLS) models were then utilized to examine, improve the latent space, and select high-quality spectra. We show that acquiring highly correlated spectra enhances the …


Coupling Nitrate Capture With Ammonia Production Through Bifunctional Redox-Electrodes, Kwiyong Kim, Alexandra Zagalskaya, Jing Lian Ng, Jaeyoung Hong, Vitaly Alexandrov, Tuan Anh Pham, Xiao Su Jan 2023

Coupling Nitrate Capture With Ammonia Production Through Bifunctional Redox-Electrodes, Kwiyong Kim, Alexandra Zagalskaya, Jing Lian Ng, Jaeyoung Hong, Vitaly Alexandrov, Tuan Anh Pham, Xiao Su

Department of Chemical and Biomolecular Engineering: Faculty Publications

Nitrate is a ubiquitous aqueous pollutant from agricultural and industrial activities. At the same time, conversion of nitrate to ammonia provides an attractive solution for the coupled environmental and energy challenge underlying the nitrogen cycle, by valorizing a pollutant to a carbon-free energy carrier and essential chemical feedstock. Mass transport limitations are a key obstacle to the efficient conversion of nitrate to ammonia from water streams, due to the dilute concentration of nitrate. Here, we develop bifunctional electrodes that couple a nitrate-selective redox-electrosorbent (polyaniline) with an electrocatalyst (cobalt oxide) for nitrate to ammonium conversion. We demonstrate the synergistic reactive separation …


Conductive 3d Nano-Biohybrid Systems Based On Densified Carbon Nanotube Forests And Living Cells, Roya Bagheri, Alicia K. Ball, Masoud Kasraie, Aparna Chandra, Xinqian Chen, Ibrahim Miskioglu, Zhiying Shan, Parisa Pour Shahid Saeed Abadi Jan 2023

Conductive 3d Nano-Biohybrid Systems Based On Densified Carbon Nanotube Forests And Living Cells, Roya Bagheri, Alicia K. Ball, Masoud Kasraie, Aparna Chandra, Xinqian Chen, Ibrahim Miskioglu, Zhiying Shan, Parisa Pour Shahid Saeed Abadi

Michigan Tech Publications, Part 2

Conductive biohybrid cell-material systems have applications in bioelectronics and biorobotics. To date, conductive scaffolds are limited to those with low electrical conductivity or 2D sheets. Here, 3D biohybrid conductive systems are developed using fibroblasts or cardiomyocytes integrated with carbon nanotube (CNT) forests that are densified due to interactions with a gelatin coating. CNT forest scaffolds with a height range of 120–240 µm and an average electrical conductivity of 0.6 S/cm are developed and shown to be cytocompatible as evidenced from greater than 89% viability measured by live-dead assay on both cells on day 1. The cells spread on top and …


Increased Liver Stiffness Promotes Hepatitis B Progression By Impairing Innate Immunity In Ccl4-Induced Fibrotic Hbv+ Transgenic Mice, Grace Bybee, Youra Moeun, Weimin Wang, Kusum K. Kharbanda, Larisa Y. Poluektova, Srivatsan Kidambi, Natalia A. Osna, Murali Ganesan Jan 2023

Increased Liver Stiffness Promotes Hepatitis B Progression By Impairing Innate Immunity In Ccl4-Induced Fibrotic Hbv+ Transgenic Mice, Grace Bybee, Youra Moeun, Weimin Wang, Kusum K. Kharbanda, Larisa Y. Poluektova, Srivatsan Kidambi, Natalia A. Osna, Murali Ganesan

Department of Chemical and Biomolecular Engineering: Faculty Publications

Background: Hepatitis B virus (HBV) infection develops as an acute or chronic liver disease, which progresses from steatosis, hepatitis, and fibrosis to end-stage liver diseases such as cirrhosis and hepatocellular carcinoma (HCC). An increased stromal stiffness accompanies fibrosis in chronic liver diseases and is considered a strong predictor for disease progression. The goal of this study was to establish the mechanisms by which enhanced liver stiffness regulates HBV infectivity in the fibrotic liver tissue. Methods: For in vitro studies, HBV-transfected HepG2.2.15 cells were cultured on polydimethylsiloxane gels coated by polyelectrolyte multilayer films of 2 kPa (soft) or 24 kPa (stiff) …


Mesenchymal Stromal Cells And Alpha-1 Antitrypsin Have A Strong Synergy In Modulating Inflammation And Its Resolution, Li Han, Xinran Wu, Ou Wang, Xiao Luan, William Velander, Michael Aynardi, E. Scott Halstead, Anthony S. Bonavia, Rong Jin, Guohong Li, Yulong Li, Yong Wang, Cheng Dong, Yuguo Lei Jan 2023

Mesenchymal Stromal Cells And Alpha-1 Antitrypsin Have A Strong Synergy In Modulating Inflammation And Its Resolution, Li Han, Xinran Wu, Ou Wang, Xiao Luan, William Velander, Michael Aynardi, E. Scott Halstead, Anthony S. Bonavia, Rong Jin, Guohong Li, Yulong Li, Yong Wang, Cheng Dong, Yuguo Lei

Department of Chemical and Biomolecular Engineering: Faculty Publications

Rationale: Trauma, surgery, and infection can cause severe inflammation. Both dysregulated inflammation intensity and duration can lead to significant tissue injuries, organ dysfunction, mortality, and morbidity. Anti-inflammatory drugs such as steroids and immunosuppressants can dampen inflammation intensity, but they derail inflammation resolution, compromise normal immunity, and have significant adverse effects. The natural inflammation regulator mesenchymal stromal cells (MSCs) have high therapeutic potential because of their unique capabilities to mitigate inflammation intensity, enhance normal immunity, and accelerate inflammation resolution and tissue healing. Furthermore, clinical studies have shown that MSCs are safe and effective. However, they are not potent enough, alone, to …


Controlling Differentiation Of Adult Stem Cells Via Cell-Derived Nanoparticles: Implications In Bone Repair, Shruthi Polla Ravi, Yasmeen Shamiya, Aishik Chakraborty, Ali Coyle, Alap A. Zahid, Jin Wang, Michael Boutilier, Emmanuel Ho, Arghya Paul Dec 2022

Controlling Differentiation Of Adult Stem Cells Via Cell-Derived Nanoparticles: Implications In Bone Repair, Shruthi Polla Ravi, Yasmeen Shamiya, Aishik Chakraborty, Ali Coyle, Alap A. Zahid, Jin Wang, Michael Boutilier, Emmanuel Ho, Arghya Paul

Chemical and Biochemical Engineering Publications

No abstract provided.


In Vitro Models For The Study Of Liver Biology And Diseases: Advances And Limitations, Savneet Kaur, Srivatsan Kidambi, Martí Ortega-Ribera, Le Thi Thanh Thuy, Natalia Nieto, Victoria C. Cogger, Wei-Fen Xie, Frank Tacke, Jordi Gracia-Sancho Nov 2022

In Vitro Models For The Study Of Liver Biology And Diseases: Advances And Limitations, Savneet Kaur, Srivatsan Kidambi, Martí Ortega-Ribera, Le Thi Thanh Thuy, Natalia Nieto, Victoria C. Cogger, Wei-Fen Xie, Frank Tacke, Jordi Gracia-Sancho

Department of Chemical and Biomolecular Engineering: Faculty Publications

In vitro models of liver (patho)physiology, new technologies, and experimental approaches are progressing rapidly. Based on cell lines, induced pluripotent stem cells or primary cells derived from mouse or human liver as well as whole tissue (slices), such in vitro single- and multicellular models, including complex microfluidic organ-on-a-chip systems, provide tools to functionally understand mechanisms of liver health and disease. The International Society of Hepatic Sinusoidal Research (ISHSR) commissioned this working group to review the currently available in vitro liver models and describe the advantages and disadvantages of each in the context of evaluating their use for the study of …


Ab Initio Insight Into The Electrolysis Of Water On Basal And Edge (Fullerene C20) Surfaces Of 4 Å Single-Walled Carbon Nanotubes, Zhen Jiang, Nadia N. Intan, Qiong Yang Nov 2022

Ab Initio Insight Into The Electrolysis Of Water On Basal And Edge (Fullerene C20) Surfaces Of 4 Å Single-Walled Carbon Nanotubes, Zhen Jiang, Nadia N. Intan, Qiong Yang

Department of Chemical and Biomolecular Engineering: Faculty Publications

The extreme surface reactivity of 4 Å single-walled carbon nanotubes (SWCNTs) makes for a very promising catalytic material, however, controlling it experimentally has been found to be challenging. Here, we employ ab initio calculations to investigate the extent of surface reactivity and functionalization of 4 Å SWCNTs. We study the kinetics of water dissociation and adsorption on the surface of 4 Å SWCNTs with three different configurations: armchair (3,3), chiral (4,2) and zigzag (5,0). We reveal that out of three different configurations of 4 Å SWCNTs, the surface of tube (5,0) is the most reactive due to its small HOMO–LUMO …


Correlating The Macrostructural Variations Of An Ion Gel With Its Carbon Dioxide Sorption Capacity, Tung Nguyen,, Mona Bavarian, Siamak Nejati Nov 2022

Correlating The Macrostructural Variations Of An Ion Gel With Its Carbon Dioxide Sorption Capacity, Tung Nguyen,, Mona Bavarian, Siamak Nejati

Department of Chemical and Biomolecular Engineering: Faculty Publications

We report on a direct correlation between the macroscale structural variations and the gas sorption capacities of an ion gel. Here, we chose 1-ethyl-3-methylimidazolium bis(trifluoromethyl sulfonyl)imide ([Emim][TF2N]) and poly(vinylidene fluoride)-co-hexafluoropropylene (PVDF-HFP) as the ionic liquid and host polymer, respectively. The CO2 sorption in the thin films of the IL-polymer was measured using the gravimetric method. The results of our experiment showed that the trend in CO2 uptake of these mixtures was nonlinearly correlated with the content of IL. Here, we highlight that the variations in the molecular structure of the polymers were the main reason behind …


Electrophilic Aldehyde 4-Hydroxy-2-Nonenal Mediated Signaling And Mitochondrial Dysfunction, Sudha Sharma, Papori Sharma, Tara Bailey, Susmita Bhattarai, Utsab Subedi, Chloe Miller, Hosne Ara, Srivatsan Kidambi, Hong Sun, Manikandan Panchatcharam, Sumitra Miriyala Oct 2022

Electrophilic Aldehyde 4-Hydroxy-2-Nonenal Mediated Signaling And Mitochondrial Dysfunction, Sudha Sharma, Papori Sharma, Tara Bailey, Susmita Bhattarai, Utsab Subedi, Chloe Miller, Hosne Ara, Srivatsan Kidambi, Hong Sun, Manikandan Panchatcharam, Sumitra Miriyala

Department of Chemical and Biomolecular Engineering: Faculty Publications

Reactive oxygen species (ROS), a by-product of aerobic life, are highly reactive molecules with unpaired electrons. The excess of ROS leads to oxidative stress, instigating the peroxidation of polyunsaturated fatty acids (PUFA) in the lipid membrane through a free radical chain reaction and the formation of the most bioactive aldehyde, known as 4-hydroxynonenal (4-HNE). 4-HNE functions as a signaling molecule and toxic product and acts mainly by forming covalent adducts with nucleophilic functional groups in proteins, nucleic acids, and lipids. The mitochondria have been implicated as a site for 4-HNE generation and adduction. Several studies clarified how 4-HNE affects the …


Fabricating 3-Dimensional Human Brown Adipose Microtissues For Transplantation Studies, Ou Wang, Li Han, Haishuang Lin, Mingmei Tian, Shuyang Zhang, Bin Duan, Soonkyu Chung, Chi Zhang, Xiaojun Lian, Yong Wang, Yuguo Lei Oct 2022

Fabricating 3-Dimensional Human Brown Adipose Microtissues For Transplantation Studies, Ou Wang, Li Han, Haishuang Lin, Mingmei Tian, Shuyang Zhang, Bin Duan, Soonkyu Chung, Chi Zhang, Xiaojun Lian, Yong Wang, Yuguo Lei

Department of Chemical and Biomolecular Engineering: Faculty Publications

Transplanting cell cultured brown adipocytes (BAs) represents a promising approach to prevent and treat obesity (OB) and its associated metabolic disorders, including type 2 diabetes mellitus (T2DM). However, transplanted BAs have a very low survival rate in vivo. The enzymatic dissociation during the harvest of fully differentiated BAs also loses significant cells. There is a critical need for novel methods that can avoid cell death during cell preparation, transplantation, and in vivo. Here, we reported that preparing BAs as injectable microtissues could overcome the problem. We found that 3D culture promoted BA differentiation and UCP-1 expression, and the optimal initial …


Nonordered Dendritic Mesoporous Silica Nanoparticles As Promising Platforms For Advanced Methods Of Diagnosis And Therapies, S. Malekmohammadi, Riaz Ur Rehman Mohammed, H. Samadian, A. Zarebkohan, A. García-Fernández, G.R. Kokil, F. Sharifi, J. Esmaeili, M. Bhia, M. Razavi, M. Bodaghi, T. Kumeria, R. Martínez-Máñez Aug 2022

Nonordered Dendritic Mesoporous Silica Nanoparticles As Promising Platforms For Advanced Methods Of Diagnosis And Therapies, S. Malekmohammadi, Riaz Ur Rehman Mohammed, H. Samadian, A. Zarebkohan, A. García-Fernández, G.R. Kokil, F. Sharifi, J. Esmaeili, M. Bhia, M. Razavi, M. Bodaghi, T. Kumeria, R. Martínez-Máñez

Department of Chemical and Biomolecular Engineering: Faculty Publications

Dendritic mesoporous silica nanoparticles (DMSNs) are a new generation of porous materials that have gained great attention compared to other mesoporous silicas due to attractive properties, including straightforward synthesis methods, modular surface chemistry, high surface area, tunable pore size, chemical inertness, particle size distribution, excellent biocompatibility, biodegradability, and high pore volume compared with conventional mesoporous materials. The last years have witnessed a blooming growth of the extensive utilization of DMSNs as an efficient platform in a broad spectrum of biomedical and industrial applications, such as catalysis, energy harvesting, biosensing, drug/gene delivery, imaging, theranostics, and tissue engineering. DMSNs are considered great …


Exploring The Metabolic Landscape Of Pancreatic Ductal Adenocarcinoma Cells Using Genome-Scale Metabolic Modeling, Mohammad Mazharul Islam, Andrea Goertzen, Pankaj K. Singh, Rajib Saha Jun 2022

Exploring The Metabolic Landscape Of Pancreatic Ductal Adenocarcinoma Cells Using Genome-Scale Metabolic Modeling, Mohammad Mazharul Islam, Andrea Goertzen, Pankaj K. Singh, Rajib Saha

Department of Chemical and Biomolecular Engineering: Faculty Publications

Pancreatic ductal adenocarcinoma (PDAC) is a major research focus because of its poor therapy response and dismal prognosis. PDAC cells adapt their metabolism to the surrounding environment, often relying on diverse nutrient sources. Because traditional experimental techniques appear exhaustive to find a viable therapeutic strategy, a highly curated and omics-informed PDAC genome-scale metabolic model was reconstructed using patient-specific transcriptomics data. From the model-predictions, several new metabolic functions were explored as potential therapeutic targets in addition to the known metabolic hallmarks of PDAC. Significant downregulation in the peroxisomal beta oxidation pathway, flux modulation in the carnitine shuttle system, and upregulation in …


Porcine Liver Injury Model To Assess Tantalum-Containing Bioactive Glass Powders For Hemostasis, Malvika Nagrath, Danielle Bince, Corwyn Rowsell, Deanna Polintan, Joao Rezende-Neto, Mark R. Towler Jun 2022

Porcine Liver Injury Model To Assess Tantalum-Containing Bioactive Glass Powders For Hemostasis, Malvika Nagrath, Danielle Bince, Corwyn Rowsell, Deanna Polintan, Joao Rezende-Neto, Mark R. Towler

Chemical and Biochemical Engineering Faculty Research & Creative Works

This study evaluates compositions of tantalum-containing mesoporous bioactive glass (Ta-MBG) powders using a porcine fatal liver injury model. The powders based on (80-x)SiO2-15CaO-5P2O5-xTa2O5 compositions with x = 0 (0Ta/Ta-free), 1 (1Ta), and 5 (5Ta) mol% were made using a sol–gel process. A class IV hemorrhage condition was simulated on the animals; hemodynamic data and biochemical analysis confirmed the life-threatening condition. Ta-MBGs were able to stop the bleeding within 10 min of their application while the bleeds in the absence of any intervention or in the presence of a commercial agent, AristaTM …


Molecular-Level Control Over Ionic Conduction And Ionic Current Direction By Designing Macrocycle-Based Ionomers, Shyambo Chatterjee, Ehsan Zamani, Seefat Farzin, Iman Evazzade, Oghenetega Allen Obewhere, Tyler James Johnson, Vitaly Alexandrov, Shudipto Konika Dishari May 2022

Molecular-Level Control Over Ionic Conduction And Ionic Current Direction By Designing Macrocycle-Based Ionomers, Shyambo Chatterjee, Ehsan Zamani, Seefat Farzin, Iman Evazzade, Oghenetega Allen Obewhere, Tyler James Johnson, Vitaly Alexandrov, Shudipto Konika Dishari

Department of Chemical and Biomolecular Engineering: Faculty Publications

Poor ionic conductivity of the catalyst-binding, submicrometer- thick ionomer layers in energy conversion and storage devices is a huge challenge. However, ionomers are rarely designed keeping in mind the specific issues associated with nanoconfinement. Here, we designed nature-inspired ionomers (calix-2) having hollow, macrocyclic, calix[4]arene-based repeat units with precise, sub-nanometer diameter. In ≤100 nm-thick films, the in-plane proton conductivity of calix-2 was up to 8 times higher than the current benchmark ionomer Nafion at 85% relative humidity (RH), while it was 1−2 orders of magnitude higher than Nafion at 20−25% RH. Confocal laser scanning microscopy and other synthetic techniques allowed us …


Liquid And Solids Phase Backmixing In A Bubble And Slurry Bubble Column Using A Virtual Tracer Response Methodology Based On The Trajectory Data Of The Radioactive Particle Tracking (Rpt) Technique, Lu Han, Premkumar Kamalanathan, Muthanna H. Al-Dahhan May 2022

Liquid And Solids Phase Backmixing In A Bubble And Slurry Bubble Column Using A Virtual Tracer Response Methodology Based On The Trajectory Data Of The Radioactive Particle Tracking (Rpt) Technique, Lu Han, Premkumar Kamalanathan, Muthanna H. Al-Dahhan

Chemical and Biochemical Engineering Faculty Research & Creative Works

Virtual tracer response methodology developed based on the trajectory data of the computer aided radioactive particle tracking (CARPT) technique was demonstrated. The demonstrated virtual tracer technique has advantages of non-invasiveness, near perfect injection/sampling, and flexibility in choosing the sampling/injection boundaries in a specific spatial pattern. With the developed virtual tracer technique, liquid and solids back mixing was investigated at the conditions mimicking Fischer-Tropsch synthesis. Experiments were conducted at different pressure, solids loading, and superficial gas velocity. The axial dispersion model (ADM) and recirculation and cross flow dispersion (RCFD) models were used to model the liquid mixing. Transient sedimentation dispersion model …


Review Of Biomechanical Studies And Finite Element Modeling Of Sternal Closure Using Bio-Active Adhesives, Amatulraheem Al-Abassi, Marcello Papini, Mark R. Towler May 2022

Review Of Biomechanical Studies And Finite Element Modeling Of Sternal Closure Using Bio-Active Adhesives, Amatulraheem Al-Abassi, Marcello Papini, Mark R. Towler

Chemical and Biochemical Engineering Faculty Research & Creative Works

The most common complication of median sternotomy surgery is sternum re-separation after sternal fixation, which leads to high rates of morbidity and mortality. The adhered sternal fixation technique comprises the wiring fixation technique and the use of bio-adhesives. Adhered sternal fixation techniques have not been extensively studied using finite element analysis, so mechanical testing studies and finite element analysis of sternal fixation will be presented in this review to find the optimum techniques for simulating sternal fixation with adhesives. The optimal wiring technique should enhance bone stability and limit sternal displacement. Bio-adhesives have been proposed to support sternal fixation, as …


Hydration Of High-Alumina Calcium Aluminate Cements With Carbonate And Sulfate Additives, Jonathan Lapeyre, Sai Akshay Ponduru, Monday Uchenna Okoronkwo, Hongyan Ma, Aditya Kumar May 2022

Hydration Of High-Alumina Calcium Aluminate Cements With Carbonate And Sulfate Additives, Jonathan Lapeyre, Sai Akshay Ponduru, Monday Uchenna Okoronkwo, Hongyan Ma, Aditya Kumar

Chemical and Biochemical Engineering Faculty Research & Creative Works

This study investigated the influence of limestone (LS) and calcium sulfate (C$) mineral additives on the hydration kinetics of high-α-Al2O3 calcium aluminate cement (CAC) utilizing experimental techniques and thermodynamic simulations. Increasing the replacement level of limestone or calcium sulfate increased the cumulative heat of the hydration reaction. The limestone exhibited limited acceleratory effects to the CAC hydration kinetics due to the coarseness of the powder. The coarse particle size distribution limited any heterogenous nucleation that would have occurred with a finer particle size as well as the intrinsic insolubility kinetically limits the formation of monocarboaluminate phases. Conversely, …


Editorial For Gels 6th Anniversary Special Issue, Esmaiel Jabbari, Gulden Camci-Unal Apr 2022

Editorial For Gels 6th Anniversary Special Issue, Esmaiel Jabbari, Gulden Camci-Unal

Faculty Publications

Note: In lieu of an abstract, this is an excerpt from the first page.


This Special Issue celebrates many outstanding quality papers published in Gels over the past six years since its first issue was published in 2015 [...]