Open Access. Powered by Scholars. Published by Universities.®

Biomedical Engineering and Bioengineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Biomaterials

Theses/Dissertations

Institution
Keyword
Publication Year
Publication
File Type

Articles 61 - 90 of 399

Full-Text Articles in Biomedical Engineering and Bioengineering

The Influence Of Processing And Additives On Cellulose Nanofiber Properties For Orthopedic Application, Mitchell P. Chesley Aug 2022

The Influence Of Processing And Additives On Cellulose Nanofiber Properties For Orthopedic Application, Mitchell P. Chesley

Electronic Theses and Dissertations

Current orthopedics are separated into three different classes of materials, metals, polymers, and ceramics. While these devices have had success throughout the years they are not without their faults. Metallic devices for example are usually extraordinarily stiff when compared with the surrounding bone. This difference in stiffness induces localized stress-shielding promoting cortical atrophy, which can lead to osteoporosis. Polymers while having the capacity of being biodegradable and bioabsorbable also have the potential to incite localized demineralization and weakness in surrounding bone. A result of breakdown byproducts not efficiently being evacuated from the area, which additionally acts as catalysts expediating the …


Developing And Characterizing A Novel Tempo Cnf Hydrogel Adjuvant And Delivery System For Aquatic Vaccines, Kora Kukk Aug 2022

Developing And Characterizing A Novel Tempo Cnf Hydrogel Adjuvant And Delivery System For Aquatic Vaccines, Kora Kukk

Electronic Theses and Dissertations

Aquaculture is a large part of the food production sector which is greatly expanding. One of the largest losses in aquaculture is due to pathogens. Current solutions for protecting farmed finfish from pathogens can be very expensive with variable efficiency. Current disease prevention strategies include vaccination. Types of vaccines include immersion vaccines, feed vaccines, and injectable vaccines. The most popular solution is oil-based injectable vaccines due to its protection. However, the oil-based adjuvant used in most of these formulations causes adverse reactions in the fish including reduced growth. These vaccines require multiple administrations throughout the fish’s lifetime causing unwanted handling …


Continuous, Non-Destructive Detection Of Surface Bacterial Growth With Bioinspired Vascularized Polymers, Brandon Dixon Aug 2022

Continuous, Non-Destructive Detection Of Surface Bacterial Growth With Bioinspired Vascularized Polymers, Brandon Dixon

Electronic Theses and Dissertations

Reducing or eliminating bacteria on surfaces is vital for medical devices, drinking water quality, and industrial processes. Evaluating surface bacterial growth at buried interfaces can be problematic due to the time-consuming disassembly process required for obtaining standard surface samples. In this work, a continuous, non-destructive, and reusable method was developed to detect surface bacterial growth at buried interfaces. Inspired by vascular systems in nature that permit chemical communication between the surface and underlying tissues of an organism, bacterial-specific signals diffusing from cells on the surface were detected in channels filled with an inert carrier fluid embedded in a polymer matrix. …


Brain Inspired Organic Electronic Devices And Systems For Adaptive Signal Processing, Memory, And Learning., Subhadeep Koner Aug 2022

Brain Inspired Organic Electronic Devices And Systems For Adaptive Signal Processing, Memory, And Learning., Subhadeep Koner

Doctoral Dissertations

A new class of electronic device has emerged which bear the potential for low powered brain like adaptive signal processing, memory, and learning. It is a non-linear resistor with memory coined as memristor. A memristor is a two-terminal electrical device which simultaneously changes its resistance (processing information) and store the resistance state pertaining to the applied power (memory). Therefore, it can collocate memory and processing much like our brain synapse which can save time and energy for information processing. Leveraging stored memory, it can thereby help future engineered systems to learn autonomously from past experiences. There has been a growing …


Tissue-Engineered Living Pulmonary Valve For Young Adult Patients, Erica Hoskins Aug 2022

Tissue-Engineered Living Pulmonary Valve For Young Adult Patients, Erica Hoskins

All Theses

Cardiovascular disease (CVD) is a non-communicable disease responsible for 659,000 deaths annually in the United States. While CVD can affect all components of the cardiovascular system, heart valve disease is responsible for 25,000 deaths yearly. Of specific interest is the pulmonary valve since there is limited research on resolving pathologies that affect it. Like the aortic and mitral valves, common pathologies include stenosis, regurgitation, and atresia. Notably, the pulmonary valve requires repair and replacement in pediatric patients and young adults due to congenital disabilities. Even with technological advances in valve replacements, limitations still present themselves for use with younger patients …


Fabrication And Non-Covalent Functionalization And Characterization Of Graphene-Based Devices On Novel Substrate Cadmium Trithiophosphate (Iv) — Cdps, Abayomi Omotola Omolewu Aug 2022

Fabrication And Non-Covalent Functionalization And Characterization Of Graphene-Based Devices On Novel Substrate Cadmium Trithiophosphate (Iv) — Cdps, Abayomi Omotola Omolewu

Graduate Theses and Dissertations

With graphene at the center of several application areas such as sensing, circuits, high-frequency devices for communication systems, etc., it is crucial to understand how the intrinsic properties of devices made from graphene and other materials like platinum and palladium nanoparticles affect the performance of such devices for the specific application area. Many graphene-based devices for different application areas have focused mainly on the material composition of the graphene-based devices and how it affects performance parameters for the specific application. However, it would be insightful to understand how the intrinsic electrical properties of the graphene devices for different applications affect …


Performance And Fouling During Bioreactor Harvesting, Da Zhang Aug 2022

Performance And Fouling During Bioreactor Harvesting, Da Zhang

Graduate Theses and Dissertations

Tangential flow filtration has many advantages for bioreactor harvesting as the permeate could be introduced directly to the subsequent capture step, the process is easy to scale up, and fouling of the filter is limited by the cross flow. However, membrane fouling has limited its widespread use. This is particularly problematic given the high cell densities encountered today. Here a reverse asymmetric commercial membrane, BioOptimal™ MF-SL (Asahi Kasei), where the more open surface faces the feed stream, and the tighter barrier layer faces the permeate stream, has been investigated for bioreactor harvesting. The open surface contains pores up to 40 …


Motion And Crosslinked Polyethylene Wear In Reverse Total Shoulder Arthroplasty, Christopher Millward Jul 2022

Motion And Crosslinked Polyethylene Wear In Reverse Total Shoulder Arthroplasty, Christopher Millward

Electronic Thesis and Dissertation Repository

The reverse total shoulder arthroplasty (RTSA) has quickly grown to become the most commonly used shoulder arthroplasty design; however, reports have shown evidence of RTSA failures related to polyethylene wear and damage. Therefore, the present work investigated the wear of crosslinked polyethylene (XLPE) in environments similar to that of an in vivo RTSA. Additionally, a computational model was developed based on a previous study of the shoulder motions obtained from a selection of typical patients with RTSA. This model quantified the amount of glenohumeral motion that an RTSA may be subjected to in vivo and provided an approximate value for …


Development Of Brain-Derived Bioscaffolds For Neural Progenitor Cell Culture And Delivery, Julia Terek Jun 2022

Development Of Brain-Derived Bioscaffolds For Neural Progenitor Cell Culture And Delivery, Julia Terek

Electronic Thesis and Dissertation Repository

The use of brain extracellular matrix (ECM) as a biomaterial has the potential to promote neural tissue regeneration by providing cell-instructive cues that direct survival, proliferation, and differentiation. This study developed a novel detergent-free decellularization protocol that effectively reduced cellular content while preserving key ECM components in porcine and rat brains. The resulting decellularized brain tissue (DBT) was incorporated into microcarriers to assess its effects on the growth, phenotype and neurotrophic factor gene expression of rat brain-derived progenitor cells cultured within spinner flask bioreactors, using purified collagen microcarriers as a control. Both types of microcarriers supported cell expansion and survival, …


Eagle Medical Tray Denesting & Debris Removal Process, Nicholas Allen Ungefug, Noah Chavez, Susana Shu-Lin Okhuysen, Michael Augustine Pennington Jun 2022

Eagle Medical Tray Denesting & Debris Removal Process, Nicholas Allen Ungefug, Noah Chavez, Susana Shu-Lin Okhuysen, Michael Augustine Pennington

Industrial and Manufacturing Engineering

Eagle Medical Incorporated is a contract medical device packaging and sterilization company. The company purchases thermoformed medical packaging trays, which maintain the sterility of medical devices, from various manufacturers. To ensure packaging quality and to prevent cleanroom contamination, Eagle Medical inspects and sterilizes each blister tray that they order. This process is an essential non-value-added activity that creates a bottleneck. Cleanroom employees must stop packaging medical devices and attend to the processing of blister trays and packaging solutions. The blister trays arrive at Eagle’s facility in nested stacks. Vibration and movement during shipping further compresses the stacks, which makes separation …


A Comparative Study On The Functionality Of Porcine Dura As A Tissue-Engineered Dura Mater Graft For Clinical Applications, Ashma Sharma May 2022

A Comparative Study On The Functionality Of Porcine Dura As A Tissue-Engineered Dura Mater Graft For Clinical Applications, Ashma Sharma

Theses and Dissertations

Damage to dura mater may occur during intracranial or spinal surgeries, which can result in cerebrospinal fluid leakage as well as other potentially fatal physiological changes. As a result, biological scaffolds derived from xenogeneic materials are typically used to repair and regenerate dura mater post intracranial or spinal surgeries. In this study we explore the mechanics, structure, and immunological capacity of xenogeneic dura mater to be considered as a replacement for human dura. A comparative analysis is done between native porcine dura and a commercially available bovine collagen-based dura graft. Native porcine dura mater was decellularized and subjected to mechanical …


Developing New Crutch Tip Design For Overall Increased Stability And Improved Movement On Different Terrains, Lauren Skinner May 2022

Developing New Crutch Tip Design For Overall Increased Stability And Improved Movement On Different Terrains, Lauren Skinner

Honors Theses

Crutches are a mobility assistive device that are often used in various situations, such as post- surgical rehabilitation and recovery after injury. The current crutch tip design that is used on today’s crutches are often unstable and do not provide quality movement on different terrains, such as snow, ice, mud, and wet surfaces. These problems would be solved with a new tip design that could be attached to existing crutches or manufactured with the crutch itself. The team’s solution to this problem is a crutch tip with modular parts. The tip would attach to the shaft of the crutch like …


Drug-Facilitated Sexual Assault At The University Of Arkansas, Barrett Weidman May 2022

Drug-Facilitated Sexual Assault At The University Of Arkansas, Barrett Weidman

Chemical Engineering Undergraduate Honors Theses

This work was written to fulfill two main purposes. First, to help survivors of Drug-Facilitated Sexual Assault (DFSA) process their experience by compiling the toxicological, pharmacological, and distribution of the three most used date-rape drugs. Second, to gauge the knowledge and interest of University of Arkansas students regarding drug impairments, sexual assault education, and bystander intervention training. A survey was conducted for the latter and revealed that 91.6% of students believe the University’s existing sexual assault prevention education and bystander intervention training have room for improvement. Also, 37.1% of students who have received this education report that the programming does …


Exploring The Effects Of Varied Land Use On Elemental Concentrations Within Streams, Logan Jennings May 2022

Exploring The Effects Of Varied Land Use On Elemental Concentrations Within Streams, Logan Jennings

Biological and Agricultural Engineering Undergraduate Honors Theses

It is well documented that human activity influences the chemistry of surrounding waters. As such, it is possible that there is a link between land use within a watershed and the chemical composition of the stream. The objectives of this study are to determine if varied land use does affect the concentrations of macronutrients and trace elements present in the streams of Northwest Arkansas, and if so, to determine what extent urban and agricultural development are responsible for these changes. Water samples were collected across 19 streams in the Northwest Arkansas region between January and March of 2022. Water samples …


Alternative Fixation Of Venous Valves For Bioprosthetic Applications, Makenzie Kapales May 2022

Alternative Fixation Of Venous Valves For Bioprosthetic Applications, Makenzie Kapales

Biomedical Engineering Undergraduate Honors Theses

Venous valve failure allows for the retrograde, or backward, flow of blood into the lower extremities, which leads to Chronic Venous Insufficiency (CVI). CVI infringes upon quality of life through ulceration and can result in death due to Deep Vein Thrombosis (DVT), or blood clots, causing pulmonary embolism. A successful treatment of CVI restores valve function and prevents retrograde blood flow; however, current bioprosthetic venous valves exhibit low patency and high calcification. To improve upon bioprosthetic venous valves and CVI treatment, the University of Arkansas’s Cardiovascular Biomechanics Lab conducts studies with the purpose of comparing the properties and performance of …


Insole Fall Prevention Device, Nick M. Hughes, Andrew M. Slaboda May 2022

Insole Fall Prevention Device, Nick M. Hughes, Andrew M. Slaboda

Biomedical Engineering

Falls among the aging population occur every single day, with 1 in every 5 resulting in some injury and 300,000 hospitalized every year with a hip fracture [1]. The most popular and effective way to mitigate these falls is through physical therapist intervention. However, with the increased popularity in telerehab, many patients at risk for falls cannot accurately convey their gait tendencies to their physical therapists from the comfort of their home or while not in direct contact with the PT. A device like an insole, implanted with force sensors, which measures different parts of a patient’s foot, could convey …


Synthesis Of Monodisperse Nanoscintillators At High Temperatures For Biomedical Relevant Applications, Eric Zhang May 2022

Synthesis Of Monodisperse Nanoscintillators At High Temperatures For Biomedical Relevant Applications, Eric Zhang

All Dissertations

Luminescent sub-100 nm particulates continuously generate immense research interest in the biomedical field for imaging, theranostics, and optogenetics. Conventionally, upconversion nanoparticles or UV activated semiconductors are studied, however these materials are limited by biological barriers such as the skin which reduces the penetration depth of these excitation sources, tissue's auto- fluorescence, and toxicity. One approach to overcome these challenges is to use nanoscintillators (sub-100 nm materials that can generate visible light using high energy excitation sources such as x-rays) which can generate light locally to the human body. Numerous scintillators have been reported since the discovery of x-rays from the …


Insect Antennae As Bioinspirational Superstrong Fiber-Based Microfluidics, Griffin J. Donley May 2022

Insect Antennae As Bioinspirational Superstrong Fiber-Based Microfluidics, Griffin J. Donley

All Theses

Nature is frequently turned to for inspiration for the creation of new materials. Insect antennae are hollow, blood-filled fibers with complex shape, and are cantilevered at the head. The antenna is muscle-free, but the insect can controllably flex, twist, and maneuver it laterally. To explain this behavior, a comparative study of structural and tensile properties of the antennae of Periplaneta americana (American cockroach), Manduca sexta (Carolina hawkmoth), and Vanessa cardui (painted lady butterfly) was performed. These antennae demonstrate a range of distinguishable tensile properties, responding either as brittle fibers (Manduca sexta) or strain-adaptive fibers that stiffen when stretched (Vanessa cardui …


Fabrication And Characterization Of Lactobacillus Crispatus Containing Bioprints For Bacterial Vaginosis Application., Anthony J. Kyser May 2022

Fabrication And Characterization Of Lactobacillus Crispatus Containing Bioprints For Bacterial Vaginosis Application., Anthony J. Kyser

Electronic Theses and Dissertations

Bacterial vaginosis (BV) is a condition in which healthy lactobacilli are replaced by an overabundance of pathogenic bacteria in the female reproductive tract. Current antibiotic treatments often fail to “cure” infection, resulting in recurrence in more than 50% of women, 6 months post-treatment. Recently, probiotics have demonstrated promise to restore vaginal health; however, as with other active agents, delivery requires once-to-twice daily administration. Recently, three-dimensional (3D)-bioprinting has enabled the fabrication of well-defined cell-laden architectures with tunable agent release, thereby presenting a novel approach with which to deliver probiotics. One promising bioink, gelatin alginate, was selected for study, due to its …


Release Kinetics Of Metronidazole From 3d Printed Silicone Scaffolds., Sydney E. Herold May 2022

Release Kinetics Of Metronidazole From 3d Printed Silicone Scaffolds., Sydney E. Herold

Electronic Theses and Dissertations

Sustained local administration of active agents has been proposed to cure bacterial vaginosis in the female reproductive tract and restore the resident bacterial fauna. Bioprinting has shown promise for the development of systems for local agent delivery. In contrast to oral ingestion, agent release kinetics can be fine-tuned by bioprinting specialized scaffold designs tailored for particular treatments while enhancing dosage effectiveness via localized sustained release. It has been challenging to establish scaffold properties for sustained release as a function of fabrication parameters. Towards this goal, we evaluate 3D printed scaffold formulation and feasibility to sustain release of metronidazole, a representative …


Single Asperity Fretting Corrosion Of Traditional And Additively Manufactured Metallic Biomaterials: Quantitative Analysis From Acetabular Tapers To Micron And Nanometer Scale Tribocorrosion, Annsley Mace May 2022

Single Asperity Fretting Corrosion Of Traditional And Additively Manufactured Metallic Biomaterials: Quantitative Analysis From Acetabular Tapers To Micron And Nanometer Scale Tribocorrosion, Annsley Mace

All Dissertations

Mechanically assisted crevice corrosion (MACC) of metallic biomaterials continues to be a significant degradation mode. This is, in part, due to a lack of understanding of fundamental micron- and sub-micron scale mechanisms of metal degradation in biological environments. Metal-metal (or metal-hard) load bearing surfaces of hip arthroplasties are subjected to fretting crevice corrosion (FCC, one form of MACC). Current work in tribocorrosion involves large contact area tests with multiple asperities, with a distribution of load and wear that changes over time. A more systematic and controlled study of the FCC micro- and nanomechanics is needed.

Therefore, the goal of this …


Investigating The Effect Of Polymer Hydrogels On The Antimicrobial Properties Of Activated Carbon Through The Utilization Of Bacterial, Viral, And Parasitic Microorganisms, Zoe Gunter May 2022

Investigating The Effect Of Polymer Hydrogels On The Antimicrobial Properties Of Activated Carbon Through The Utilization Of Bacterial, Viral, And Parasitic Microorganisms, Zoe Gunter

Honors Theses

Activated carbon (AC) has long been utilized in biomedical applications due to its innate antimicrobial characteristics. However, little is understood about the mechanism of action that allows AC to prohibit the propagation of different pathogen species. To further ascertain these characteristics and how they affect the propagation of pathogens, procedures were designed with bacterial, viral, and parasitic agents which were utilized in conjunction with varying concentrations of polymer hydrogels to examine the antimicrobial efficacy of AC. The studies performed for this thesis were conducted employing coconut-based AC and Noveon® AA-1 Polycarbophil USP or Carbopol® 974P NF hydrogels which, …


Synthesis Of Thiol-Acrylate Hydrogels For 3d Cell Culture And Microfluidic Applications, Anowar Hossain Khan Mar 2022

Synthesis Of Thiol-Acrylate Hydrogels For 3d Cell Culture And Microfluidic Applications, Anowar Hossain Khan

LSU Doctoral Dissertations

Globally cell culture is an $18.98 billion industry as of 2020, with an 11.6 percent annual growth rate. Drug discovery has an estimated worth of $69.8 billion in 2020 and is predicted to grow to $110.4 billion by 2025. Three-dimensional (3D) cell culture of cancer cells is one of the rapidly growing felids since it better recapitulates in vivo conditions compared to two-dimensional (2D) models. However, it is challenging to grow 3D tumor spheroids outside the body, and some of the existing technology can generate these spheroids outside the human body but poorly mimic in vivo tumor models. Therefore, there …


Sol-Gel Derived Bioceramic Poly(Diethyl Fumarate – Co – Triethoxyvinylsilane) Composite, Aref Sleiman Mar 2022

Sol-Gel Derived Bioceramic Poly(Diethyl Fumarate – Co – Triethoxyvinylsilane) Composite, Aref Sleiman

Electronic Thesis and Dissertation Repository

Synthetic bone graft materials have become an increasingly popular choice for bone augmentation. Ceramic-based and polymer-based bone graft materials constitute the two main classes of synthetic bone graft materials. This study investigated the synthesis of novel bioactive composites for their potential use as bone graft biomaterials. Poly(diethyl fumarate-co-triethoxyvinylsilane)/bioceramic class II organic/inorganic hybrid biomaterials were synthesized via a sol gel process. These biomaterials were then reacted with an ammonium phosphate solution to prepare their respective composites. For the first time, we successfully synthesized sol-gel derived bioceramic poly(diethyl fumarate-co-triethoxyvinylsilane) composites. In vitro bioactivity evaluation of poly(diethyl fumarate-co-triethoxyvinylsilane)/bioceramic composites in simulated body fluid …


Optimization Of A Novel Nipam-Based Thermoresponsive Copolymer For Intramuscular Injection As A Myoblast Delivery Vehicle To Combat Peripheral Artery Occlusive Disease, Quentin R. Klueter Mar 2022

Optimization Of A Novel Nipam-Based Thermoresponsive Copolymer For Intramuscular Injection As A Myoblast Delivery Vehicle To Combat Peripheral Artery Occlusive Disease, Quentin R. Klueter

Master's Theses

There is a need for a minimally invasive delivery method to enable cell therapies to combat peripheral artery occlusive disease (PAOD) in end stage patients. Myoblasts show promise as a cell mediated therapy but warrant an improved delivery method to increase cell retention in the region of interest because of their adherent nature, relative to previously used BM-MNC’s that are non-adherent. Contemporary issues with achieving successful cell therapies of vasculature can be mainly characterized by the lack of clinical translation from promising animal studies and absence of cell delivery scaffolding. Naturally, polymers have been widely experimented with as grafts to …


An Electrochemical, Fluidic, Chip-Based Biosensor For Biomarker Detection, Lauren Bell Jan 2022

An Electrochemical, Fluidic, Chip-Based Biosensor For Biomarker Detection, Lauren Bell

Theses and Dissertations--Biomedical Engineering

Biosensors and their use in both the research and clinical field for the detection and monitoring of critical biomarkers are prevalent and constantly improving. However, continued research needs to be done to address shortcomings, such as low sensitivity, poor specificity, and poor readiness for integration into research use and patient care. The objective of this research was to create a combined fluidic, chip-based biosensor that could detect different biomarkers with high sensitivity and ease of use. For assessing the developed sensor, three separate biomarkers were tested: glucose, cholesterol, and oxygen. Both the glucose biosensor and cholesterol biosensor were combined with …


Extraction Of Melanin From Black Knot Fungus: Optimization And Applications, Amara Davis Jan 2022

Extraction Of Melanin From Black Knot Fungus: Optimization And Applications, Amara Davis

Williams Honors College, Honors Research Projects

The goal of this research project was to optimize the extraction of melanin from black knot fungus and to analyze possible applications of the extracted melanin. An extraction method that was previously created was examined for possible improvements. Improvements that were studied include the elimination of steps in the extraction process while obtaining the same quality of product, examining options for machinery that could be used to increase production rate when moved to a production plant setting, and optimize the concentrations of the raw materials that are used in the extraction for possible reduction of cost without compromising yield or …


Effect Of Viscoelasticity On Cellular Morphology And Activity, Thomas J. Petet Jr Jan 2022

Effect Of Viscoelasticity On Cellular Morphology And Activity, Thomas J. Petet Jr

Theses and Dissertations

It has been well established that there is a link between substrate stiffness and cellular activities such as proliferation, migration, and differentiation. Less characterized is the link between the time-dependent viscosity of a substrate with those cellular activities. To explore this, PDMS substrates were created with predictably tunable stiffness and viscosity parameters. A simulated model was also developed in parallel to explore the potential effects of viscosity in a computationally predictive way. It was found that the inclusion of viscosity caused a major paradigm shift to a non-zero substrate equilibrium that was sensitive to increases in the substrate stiffness. Finally, …


Development Of Cellulose-Based, Semi-Interpenetrating Network Hydrogels As Tissue-Adhesive, Thermoresponsive, Injectable Implants, Jesse Martin Jan 2022

Development Of Cellulose-Based, Semi-Interpenetrating Network Hydrogels As Tissue-Adhesive, Thermoresponsive, Injectable Implants, Jesse Martin

Dissertations and Theses

Abstract Development of Cellulose-Based, Semi-Interpenetrating Network Hydrogels as Tissue-Adhesive, Thermoresponsive, Injectable Implants

Hydrogels are three-dimensional polymer networks with high water content and tunable mechanical properties, which have been widely investigated as replacements for soft tissues, such as the intervertebral disc (IVD). Various derivatives of the plant polysaccharide, cellulose, have been explored for use as injectable hydrogel implants. Methylcellulose (MC), which exhibits thermogelation at temperatures above 32°C, and relatively hydrophilic carboxymethyl-cellulose (CMC), are versatile cellulosic polymers that have shown promise as base materials for such applications. In prior work, functionalization with methacrylate groups allowed for the formation of stable, covalently crosslinked …


Phase-Changing Nanodroplets As Nanotheranostic Platform For Combination Cancer Therapy, Catalina-Paula Spatarelu Jan 2022

Phase-Changing Nanodroplets As Nanotheranostic Platform For Combination Cancer Therapy, Catalina-Paula Spatarelu

Dartmouth College Ph.D Dissertations

Cancer is a cluster of diseases, and 1.8 million Americans are newly diagnosed each year. Treatment issues such as drug instability, the occurrence of severe side effects, as well as resistance make the need for solutions to improve conventional methods, like chemotherapy, apparent. Nano-sized drug-delivery platforms, particles loaded with therapeutic molecules that escape the immune system clearance and accumulate at the tumor site, were proposed as one of these solutions. Despite the expansion of the field, several aspects still need to be addressed: inconsistent delivery of the drugs, inability of measuring the effective dose being delivered to the tumor, lack …