Open Access. Powered by Scholars. Published by Universities.®

Biomedical Engineering and Bioengineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Bioinformatics

Institution
Keyword
Publication Year
Publication
Publication Type
File Type

Articles 31 - 42 of 42

Full-Text Articles in Biomedical Engineering and Bioengineering

Transcriptomics To Develop Biochemical Network Models In Cyanobacteria, Bridget E. Hegarty, Jordan Peccia, Ratanachat Racharaks Apr 2018

Transcriptomics To Develop Biochemical Network Models In Cyanobacteria, Bridget E. Hegarty, Jordan Peccia, Ratanachat Racharaks

Yale Day of Data

Through targeted genetic manipulations guided by network modeling, we will create a flexible, cyanobacteria-based platform for the production of biofuel-precursors and valuable chemical products. To build gene-metabolite predictive models, we have characterized Synecococcus elongatus sp. UTEX 2973’s (henceforth, UTEX 2973) gene expression and metabolite production under a number of environmental conditions.


Asd Biomarker Detection On Fmri Images: Feature Learning With Data Corruptions By Analyzing Deep Neural Network Classifier Outcomes, Xiaoxiao Li 6984086 Feb 2018

Asd Biomarker Detection On Fmri Images: Feature Learning With Data Corruptions By Analyzing Deep Neural Network Classifier Outcomes, Xiaoxiao Li 6984086

Yale Day of Data

Autism spectrum disorder (ASD) is a complex neurological and developmental disorder. It emerges early in life and is generally associated with lifelong disability. Finding the biomarkers associated with ASD is extremely helpful to understand the underlying roots of the disorder and find more targeted treatment. Previous studies suggested brain activations are abnormal in ASDs, hence functional magnetic resonance imaging (fMRI) has been used to identify ASD. In this work we addressed the problem of interpreting reliable biomarkers in classifying ASD vs. control; therefore, we proposed a 2-step pipeline: 1) classifying ASD and control fMRI images by deep neural network, and …


Identification Of Prognostic Cancer Biomarkers Through The Application Of Rna-Seq Technologies And Bioinformatics, Nathan Wong Dec 2017

Identification Of Prognostic Cancer Biomarkers Through The Application Of Rna-Seq Technologies And Bioinformatics, Nathan Wong

McKelvey School of Engineering Theses & Dissertations

MicroRNAs (miRNAs) are short single-stranded RNAs that function as the guide sequence of the post-transcriptional regulatory process known as the RNA-induced silencing complex (RISC), which targets mRNA sequences for degradation through complementary binding to the guide miRNA. Changes in miRNA expression have been reported as correlated with numerous biological processes, including embryonic development, cellular differentiation, and disease manifestation. In the latter case, dysregulation has been observed in response to infection by human papillomavirus (HPV), which has also been established as both oncogenic in cervical cancers and oropharyngeal cancers and favorable for overall patient survival after tumor formation. The identification of …


A Balanced Approach To Adaptive Probability Density Estimation, Julio Kovacs, Cailee Helmick, Willy Wriggers Apr 2017

A Balanced Approach To Adaptive Probability Density Estimation, Julio Kovacs, Cailee Helmick, Willy Wriggers

Mechanical & Aerospace Engineering Faculty Publications

Our development of a Fast (Mutual) Information Matching (FIM) of molecular dynamics time series data led us to the general problem of how to accurately estimate the probability density function of a random variable, especially in cases of very uneven samples. Here, we propose a novel Balanced Adaptive Density Estimation (BADE) method that effectively optimizes the amount of smoothing at each point. To do this, BADE relies on an efficient nearest-neighbor search which results in good scaling for large data sizes. Our tests on simulated data show that BADE exhibits equal or better accuracy than existing methods, and visual tests …


Characterization Of Molecular Communication Based On Cell Metabolism Through Mutual Information And Flux Balance Analysis, Zahmeeth Sayed Sakkaff Dec 2016

Characterization Of Molecular Communication Based On Cell Metabolism Through Mutual Information And Flux Balance Analysis, Zahmeeth Sayed Sakkaff

Department of Computer Science and Engineering: Dissertations, Theses, and Student Research

Synthetic biology is providing novel tools to engineer cells and access the basis of their molecular information processing, including their communication channels based on chemical reactions and molecule exchange. Molecular communication is a discipline in communication engineering that studies these types of communications and ways to exploit them for novel purposes, such as the development of ubiquitous and heterogeneous communication networks to interconnect biological cells with nano and biotechnology-enabled devices, i.e., the Internet of Bio-Nano Things. One major problem in realizing these goals stands in the development of reliable techniques to control the engineered cells and their behavior from the …


Genesis And Growth Of Extracellular Vesicle-Derived Microcalcification In Atherosclerotic Plaques, Joshua D. Hutcheson, Claudia Goettsch, Sergio Bertazzo, Natalia Maldonado, Jessica L. Ruiz, Wilson Goh, Katsumi Yabusaki, Tyler Faits, Carlijn Bouten, Gregory Franck, Thibaut Quillard, Peter Libby, Masanori Aikawa, Sheldon Weinbaum, Elena Aikawa Mar 2016

Genesis And Growth Of Extracellular Vesicle-Derived Microcalcification In Atherosclerotic Plaques, Joshua D. Hutcheson, Claudia Goettsch, Sergio Bertazzo, Natalia Maldonado, Jessica L. Ruiz, Wilson Goh, Katsumi Yabusaki, Tyler Faits, Carlijn Bouten, Gregory Franck, Thibaut Quillard, Peter Libby, Masanori Aikawa, Sheldon Weinbaum, Elena Aikawa

Publications and Research

Clinical evidence links arterial calcification and cardiovascular risk. Finite-element modelling of the stress distribution within atherosclerotic plaques has suggested that subcellular microcalcifications in the fibrous cap may promote material failure of the plaque, but that large calcifications can stabilize it. Yet the physicochemical mechanisms underlying such mineral formation and growth in atheromata remain unknown. Here, by using three-dimensional collagen hydrogels that mimic structural features of the atherosclerotic fibrous cap, and high-resolution microscopic and spectroscopic analyses of both the hydrogels and of calcified human plaques, we demonstrate that calcific mineral formation and maturation results from a series of events involving the …


Effectiveness Of Group Kickboxing As A Means To Improve Gait And Balance In Individuals With Ms, Kurt Jackson, Kimberly Edginton Bigelow, Christina Cooper, Harold L. Merriman Nov 2015

Effectiveness Of Group Kickboxing As A Means To Improve Gait And Balance In Individuals With Ms, Kurt Jackson, Kimberly Edginton Bigelow, Christina Cooper, Harold L. Merriman

Harold L. Merriman

In recent years, there has been a particular emphasis on identifying and delivering appropriate therapeutic interventions that address the significant balance and gait impairments that affect individuals with multiple sclerosis (MS). Group interventions implemented in community settings have been especially of interest, including tai chi classes. Recently, the authors conducted a preliminary study to examine whether group kick-boxing, which requires more vigorous movements, might be a feasible intervention. Initial findings showed promise and led the authors to pursue a more rigorous follow-up study, with the objective of determining whether a 5-week group kickboxing class improved clinical measures of balance and …


Scattering Correction Methods Of Infrared Spectra Using Graphics Processing Units, Asher Imtiaz May 2015

Scattering Correction Methods Of Infrared Spectra Using Graphics Processing Units, Asher Imtiaz

Theses and Dissertations

Fourier transform infrared (FTIR) microspectroscopy has been used for many years as a technique that provides distinctive structure-specific infrared spectra for a wide range of materials (e.g., biological (tissues, cells, bacteria, viruses), polymers, energy related, composites, minerals). The mid-infrared radiation can strongly scatter from distinct particles, with diameters ranging between 2-20 micrometer. Transmission measurements of samples (approximately 100 micrometers x 100 micrometers x 10 micrometers) with distinct particles. will be dominated by this scattering (Mie scattering). The scattering distorts the measured spectra, and the absorption spectra appear different from pure absorbance spectra. This thesis presents development and implementation of two …


Collaborative Research: North East Cyberinfrastructure Consortium, Michael Eckardt, Vicki Nemeth, Carolyn Mattingly May 2014

Collaborative Research: North East Cyberinfrastructure Consortium, Michael Eckardt, Vicki Nemeth, Carolyn Mattingly

University of Maine Office of Research Administration: Grant Reports

The North East Cyberinfrastructure Consortium has finished its third year of Track-2 funding. In this report we summarize our overall progress and progress for Year 3.

In 2006, we began to organize as the five North Eastern EPSCoR states (ME, NH, VT, Rl, DE) around cyberinfrastructure. The box below describes the state of cyberinfrastructure in 2008 by which time we had developed the North East Cyberinfrastructure Consortium to position ourselves for grant opportunities that would help us to address our cyber deficits.

The Track-2 collaborative proposal submitted in January 2009 was designed to address these barriers in order enable our …


Proteomic Analysis Of 17Β-Estradiol Degradation By Stenotrophomonas Maltophilia, Zhongtian Li May 2012

Proteomic Analysis Of 17Β-Estradiol Degradation By Stenotrophomonas Maltophilia, Zhongtian Li

Z Li

Microbial degradation plays a critical role in determining the environmental fate of steroid hormones, such as 17β-estradiol (E2). The molecular mechanisms governing the microbial transformation of E2 and its primary degradation intermediate, estrone (E1), are largely unknown. The objective of this study was to identify metabolism pathways that might be involved in microbial estrogen degradation. To achieve the objective, Stenotrophomonas maltophilia strain ZL1 was used as a model estrogen degrading bacterium and its protein expression level during E2/E1 degradation was studied using quantitative proteomics. During an E2 degradation experiment, strain ZL1 first converted E2 to E1 stoichiometrically. At 16 h …


Removing 17Β-Estradiol From Drinking Water In A Biologically Active Carbon (Bac) Reactor Modified From A Granular Activated Carbon (Gac) Reactor, Zhongtian Li Mar 2012

Removing 17Β-Estradiol From Drinking Water In A Biologically Active Carbon (Bac) Reactor Modified From A Granular Activated Carbon (Gac) Reactor, Zhongtian Li

Z Li

Estrogenic compounds in drinking water sources pose potential threats to human health. Treatment technologies are needed to effectively remove these compounds for the production of safe drinking water. In this study, GAC adsorption was first tested for its ability to remove a model estrogenic compound, 17β-estradiol (E2). Although GAC showed a relatively high adsorption capacity for E2 in isotherm experiments, it appeared to have a long mass transfer zone in a GAC column reactor, causing an early leakage of E2 in the effluent. With an influent E2 concentration of 20 μg/L, the GAC reactor was able to bring down effluent …


Modeling And Quantitative Analysis Of White Matter Fiber Tracts In Diffusion Tensor Imaging, Xuwei Liang Jan 2011

Modeling And Quantitative Analysis Of White Matter Fiber Tracts In Diffusion Tensor Imaging, Xuwei Liang

University of Kentucky Doctoral Dissertations

Diffusion tensor imaging (DTI) is a structural magnetic resonance imaging (MRI) technique to record incoherent motion of water molecules and has been used to detect micro structural white matter alterations in clinical studies to explore certain brain disorders. A variety of DTI based techniques for detecting brain disorders and facilitating clinical group analysis have been developed in the past few years. However, there are two crucial issues that have great impacts on the performance of those algorithms. One is that brain neural pathways appear in complicated 3D structures which are inappropriate and inaccurate to be approximated by simple 2D structures, …