Open Access. Powered by Scholars. Published by Universities.®

Automotive Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Automotive Engineering

Vehicle Performance Analysis Of An Autonomous Electric Shuttle Modified For Wheelchair Accessibility, Johan Fanas Rojas Apr 2020

Vehicle Performance Analysis Of An Autonomous Electric Shuttle Modified For Wheelchair Accessibility, Johan Fanas Rojas

Masters Theses

Autonomous vehicles (AV) have the potential to vastly improve independent, safe, and cost-effective mobility options for individuals with disabilities. However, accessibility considerations are often overlooked in the early stages of design, resulting in AVs that are inaccessible to people with disabilities. The needs of wheeled mobility device users can cause significant vehicle design changes due to requirements for stepless ingress/egress and increased space for onboard circulation and securement. Vehicles serving people with disabilities typically require costly aftermarket modifications for accessibility, which may have unforeseen impacts on vehicle performance and safety, particularly in the case of automated vehicles. In this research, …


Analysis Of Disengagements In Semi-Autonomous Vehicles: Drivers’ Takeover Performance And Operational Implications, Francesca M. Favaro, Sky Eurich, Syeda Rizvi, Shivangi Agarwal, Sumaid Mahmood, Nazanin Nader Jun 2019

Analysis Of Disengagements In Semi-Autonomous Vehicles: Drivers’ Takeover Performance And Operational Implications, Francesca M. Favaro, Sky Eurich, Syeda Rizvi, Shivangi Agarwal, Sumaid Mahmood, Nazanin Nader

Mineta Transportation Institute Publications

This report analyzes the reactions of human drivers placed in simulated Autonomous Technology disengagement scenarios. The study was executed in a human-in-the-loop setting, within a high-fidelity integrated car simulator capable of handling both manual and autonomous driving. A population of 40 individuals was tested, with metrics for control takeover quantification given by: i) response times (considering inputs of steering, throttle, and braking); ii) vehicle drift from the lane centerline after takeover as well as overall (integral) drift over an S-turn curve compared to a baseline obtained in manual driving; and iii) accuracy metrics to quantify human factors associated with the …