Open Access. Powered by Scholars. Published by Universities.®

Automotive Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Automotive Engineering

Analysis Of Disengagements In Semi-Autonomous Vehicles: Drivers’ Takeover Performance And Operational Implications, Francesca M. Favaro, Sky Eurich, Syeda Rizvi, Shivangi Agarwal, Sumaid Mahmood, Nazanin Nader Jul 2019

Analysis Of Disengagements In Semi-Autonomous Vehicles: Drivers’ Takeover Performance And Operational Implications, Francesca M. Favaro, Sky Eurich, Syeda Rizvi, Shivangi Agarwal, Sumaid Mahmood, Nazanin Nader

Francesca M. Favarò

This report analyzes the reactions of human drivers placed in simulated Autonomous Technology disengagement scenarios. The study was executed in a human-in-the-loop setting, within a high-fidelity integrated car simulator capable of handling both manual and autonomous driving. A population of 40 individuals was tested, with metrics for control takeover quantification given by: i) response times (considering inputs of steering, throttle, and braking); ii) vehicle drift from the lane centerline after takeover as well as overall (integral) drift over an S-turn curve compared to a baseline obtained in manual driving; and iii) accuracy metrics to quantify human factors associated with the ...


Analysis Of Disengagements In Semi-Autonomous Vehicles: Drivers’ Takeover Performance And Operational Implications, Francesca M. Favaro, Sky Eurich, Syeda Rizvi, Shivangi Agarwal, Sumaid Mahmood, Nazanin Nader Jun 2019

Analysis Of Disengagements In Semi-Autonomous Vehicles: Drivers’ Takeover Performance And Operational Implications, Francesca M. Favaro, Sky Eurich, Syeda Rizvi, Shivangi Agarwal, Sumaid Mahmood, Nazanin Nader

Mineta Transportation Institute Publications

This report analyzes the reactions of human drivers placed in simulated Autonomous Technology disengagement scenarios. The study was executed in a human-in-the-loop setting, within a high-fidelity integrated car simulator capable of handling both manual and autonomous driving. A population of 40 individuals was tested, with metrics for control takeover quantification given by: i) response times (considering inputs of steering, throttle, and braking); ii) vehicle drift from the lane centerline after takeover as well as overall (integral) drift over an S-turn curve compared to a baseline obtained in manual driving; and iii) accuracy metrics to quantify human factors associated with the ...


Low Cost Vehicular Autonomy Using Radar And Gps, Nathan Jessurun, Ryan Gordon, Danielle Fredette Apr 2019

Low Cost Vehicular Autonomy Using Radar And Gps, Nathan Jessurun, Ryan Gordon, Danielle Fredette

The Research and Scholarship Symposium

This presentation describes a subset of the systems devised for this year's autonomous golf cart senior design project. Our goal is to explore the possibilities of low cost autonomy using only radar and GPS for environmental sensing and navigation. Although autonomous and semi-autonomous ground vehicles are a relatively new reality, prototypes have been a subject of engineering research for decades, often utilizing an array of sensors and sensor fusion techniques. State of the art autonomous ground vehicle prototypes typically use a combination of LIDAR and other distance sensors (such as radar or sonar) as well as cameras and GPS ...


Dscr Based Sensor-Pooling Protocol For Connected Vehicles In Future Smart Cities, Mostafa El-Said, Samah Mansour, Vijay Bhuse Nov 2018

Dscr Based Sensor-Pooling Protocol For Connected Vehicles In Future Smart Cities, Mostafa El-Said, Samah Mansour, Vijay Bhuse

Peer-Reviewed Publications

Smart cities are racing to create a more connected Intelligent Transportation Systems (ITS) that rely on collecting data from every possible sensor such as a smart utility meter or a smart parking meter. The use of more sensors resulted in generating a lot of information that maps the smart city environment conditions to more real time data points that needed to be shared and analyzed among smart city nodes. One possibility, to carry and share the collected data, is in autonomous vehicles systems, which use the Dedicated Short Range Communications (DSRC) technology. For example, in a Car-to-Parking-Meter or a Vehicle-to-Vehicle ...


The Black Box Solution To Autonomous Liability, Ujjayini Bose Jan 2015

The Black Box Solution To Autonomous Liability, Ujjayini Bose

Washington University Law Review

Autonomous vehicles, or self-driving cars, have the potential to revolutionize modern transportation through increased productivity and safety. Today, industry leaders in both automotive manufacturing and technology development are engaged in the design and production of these vehicles. Representatives from these companies have already successfully lobbied a number of state legislatures to permit the testing and use of autonomous vehicles.

While the prospect of a mass market in autonomous vehicles is exciting for both consumers and manufacturers, the use of autonomous vehicles implicates novel legal issues. For example, when a car drives itself, who is responsible when it crashes? Should the ...