Open Access. Powered by Scholars. Published by Universities.®

Automotive Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Dissertations, Master's Theses and Master's Reports

Discipline
Keyword
Publication Year

Articles 1 - 30 of 38

Full-Text Articles in Automotive Engineering

Energy Consumption And Savings Analysis Of A Phev In Real World Driving Through Vehicle Connectivity Using Vehicle Platooning, Blended Mode Operation And Engine Start-Stop Optimizers, Pruthwiraj Santhosh Jan 2020

Energy Consumption And Savings Analysis Of A Phev In Real World Driving Through Vehicle Connectivity Using Vehicle Platooning, Blended Mode Operation And Engine Start-Stop Optimizers, Pruthwiraj Santhosh

Dissertations, Master's Theses and Master's Reports

This report presents an analysis on energy consumption of a Gen II Chevrolet Volt PHEV and its energy savings potential in Real World Driving scenarios with the help of vehicle connectivity. The research on the energy consumption analysis and optimization using connectivity will focus on four main areas of contribution which includes 1.) vehicle testing on a pre-defined drive cycle and alternative routing near the Michigan Tech campus and APS research center that is a continuation of previous students' works, 2) the energy savings potential of vehicle platooning and various vehicle platoon configurations, 3) the updating of a PHEV implementation ...


Sensor Fusion And Non-Linear Mpc Controller Development Studies For Intelligent Autonomous Vehicular Systems, Ahammad Basha Dudekula Jan 2020

Sensor Fusion And Non-Linear Mpc Controller Development Studies For Intelligent Autonomous Vehicular Systems, Ahammad Basha Dudekula

Dissertations, Master's Theses and Master's Reports

The demand for safety and fuel efficiency on ground vehicles and advancement in embedded systems created the opportunity to develop Autonomous controller. The present thesis work is three fold and it encompasses all elements that are required to prototype the autonomous intelligent system including simulation, state handling and real time implementation. The Autonomous vehicle operation is mainly dependent upon accurate state estimation and thus a major concern of implementing the autonomous navigation is obtaining robust and accurate data from sensors. This is especially true, in case of Inertial Measurement Unit (IMU) sensor data. The IMU consists of a 3-axis gyro ...


Vehicle Dynamics Modeling For Autonomous Drifting And Clothoid Based Waypoint Interpolation, Shubham Vatsa Jan 2020

Vehicle Dynamics Modeling For Autonomous Drifting And Clothoid Based Waypoint Interpolation, Shubham Vatsa

Dissertations, Master's Theses and Master's Reports

The advent of autonomous vehicles necessitates a redefinition of road safety regulations, considering a controller can possess better driving skills than an average person. The work presented here partly focuses on a vehicle dynamics model development to help imitate and control vehicle drifting maneuvers. As we see, a professional driver drifting through the traffic while keeping the car safe, it can be utilized to avoid accidents at high speeds, if required. Although drifting can produce higher yaw rates than the regular driving regime, these control capabilities have not yet been exploited in the current automotive control systems. Therefore, this report ...


Radio Frequency Studies Of Soot Loading And Ammonia Storage On A Diesel Particulate Filter With A Scr Catalyst Coating, Shreyans Sethia Jan 2020

Radio Frequency Studies Of Soot Loading And Ammonia Storage On A Diesel Particulate Filter With A Scr Catalyst Coating, Shreyans Sethia

Dissertations, Master's Theses and Master's Reports

The radio frequency (RF) measurement technique has been shown to be a viable method for measurement of the amount of soot loaded onto DPF’s [1] and the amount of NH3 stored on SCR catalysts [2]. In one of the configurations, a microwave resonant cavity is formed by the metal can encasing the enclosed catalyst. Two metal probes acting as antennas are placed on either side of the catalyst. Power transmitted between the antennas is monitored as the frequency of the signal is swept. At certain frequencies, resonance is achieved. Measurements of the resonance frequencies, amplitude at resonance, and ...


Measurement Of Current Distribution In The Land Channel Direction Of A Proton Exchange Membrane Fuel Cell, Chinmay Kulkarni Jan 2020

Measurement Of Current Distribution In The Land Channel Direction Of A Proton Exchange Membrane Fuel Cell, Chinmay Kulkarni

Dissertations, Master's Theses and Master's Reports

A fully functional proton exchange membrane fuel cell with single land channel geometry on the cathode and segmented anode current collector with 9 mm2 active area with a 350μm spatial resolution was utilized to measure the local current distribution in the land channel direction. A distinguished printed circuit board approach was used for the data acquisition to adapt to any flow field design.

Performance of this segmented cell was examined at dry, wet and moderate humidity settings to study the water transport phenomenon in the PEMFC. In the dry condition at 60 ͦ C with 0% relative humidity, the non-uniform ...


Experimental And Numerical Simulation Of Split Hopkinson Pressure Bar Test On Borosilicate Glass, Mayank K. Bagaria Jan 2019

Experimental And Numerical Simulation Of Split Hopkinson Pressure Bar Test On Borosilicate Glass, Mayank K. Bagaria

Dissertations, Master's Theses and Master's Reports

This study is an extension to the design of ceramic materials component exposed to bullet impact. Owing to the brittle nature of ceramics upon bullet impact, shattered pieces behave as pellets flying with different velocities and directions, damaging surrounding components. Testing to study the behavior of ceramics under ballistic impact can be cumbersome and expensive. Modeling the set-up through Finite Element Analysis (FEA) makes it economical and easy to optimize. However, appropriately incorporating the material in modeling makes laboratory testing essential. Previous efforts have concentrated on simulating crack pattern developed during 0.22 caliber pellet impact on Borosilicate glass. A ...


Effects Of Variable Valve Actuation On Exhaust Enthalpy And Engine Out Emissions, Zakarie Parker Jan 2019

Effects Of Variable Valve Actuation On Exhaust Enthalpy And Engine Out Emissions, Zakarie Parker

Dissertations, Master's Theses and Master's Reports

Vehicle emissions standards are becoming increasingly more strict as time progresses. Once all of the emissions devices are in their operational stage, these standards can be met with reasonable effort in powertrain design and calibration. However, the core of this system, the three-way catalyst, is non-operational until it has reached 200-350⁰C. Because of this, cold-start catalyst heating is extremely important in new vehicles. The objective of this project was to improve catalyst heating without increasing engine-out emissions. It was decided that the sensible heat portion of the exhaust enthalpy would be the best metric to judge differences between the different ...


An Experimental Study Of A Passive Nox Adsorber (Pna) For The Reduction Of Cold Start Diesel Emissions, Conor Berndt Jan 2019

An Experimental Study Of A Passive Nox Adsorber (Pna) For The Reduction Of Cold Start Diesel Emissions, Conor Berndt

Dissertations, Master's Theses and Master's Reports

Medium and heavy-duty diesel engines contribute nearly a third of all NOx emissions nationwide. Further reduction of NOx emissions from medium and heavy-duty diesel engines is needed in order to meet National Ambient Air Quality Standards (NAAQS) for ambient particulate matter and ozone. Current diesel engine aftertreatment systems are very efficient at reducing NOx emissions at exhaust temperatures above 200 °C, however at exhaust temperatures below 200 °C there are significant NOx emissions at the tailpipe. Therefore, a reduction of diesel engine cold start and low speed/load operation emissions, where exhaust temperatures are below 200 °C, is needed. Utilizing ...


Modeling Chevy Volt Gen Ii Supervisory Controller In Charge Sustaining Operation, Saurabh Bhasme Jan 2019

Modeling Chevy Volt Gen Ii Supervisory Controller In Charge Sustaining Operation, Saurabh Bhasme

Dissertations, Master's Theses and Master's Reports

This report is focused on the development of Chevy Volt Gen II powertrain supervisory controller modeling for charge sustaining operation of the vehicle. The modeling process incorporated vehicle parameters and maps provided. The overall powertrain model along with the supervisory controller is developed in MAT- LAB/SIMULINK programming platform. The powertrain model includes all components which are the IC engine, two electric motors & associated TPIM, Battery, transmission auxiliary pump and spin-losses. The supervisory controller includes the vehicle drive mode selection model, the torque blending logic for charge sustaining along with friction brake modeling. The model has been developed to perform ...


Automotive Driveline Backlash State And Size Estimator Design For Anti-Jerk Control, Kaushal Kumar Darokar Jan 2019

Automotive Driveline Backlash State And Size Estimator Design For Anti-Jerk Control, Kaushal Kumar Darokar

Dissertations, Master's Theses and Master's Reports

Vehicle drivability is an important factor which more and more customers have started assessing before buying a vehicle. Customers carry out this assessment based on both vehicle reviews/ratings and based on the test drives. One of common maneuver which a customers perform during the test drive is sudden accelerator pedal tip-in or tip-out to accelerate or coast the vehicle. Clunk and shuffle are the phenomena that usually occur during this scenario causing driver discomfort. The clunk and shuffle are caused by the backlash and compliance physical properties of the driveline. Consequently, control strategy needs to be developed which can ...


Characterization Of Hydraulic Interactions Between Torque Converter And Transmission During Transient Events, Mark Woodland Jan 2019

Characterization Of Hydraulic Interactions Between Torque Converter And Transmission During Transient Events, Mark Woodland

Dissertations, Master's Theses and Master's Reports

A torque converter was instrumented with 29 pressure transducers to measure the torus, clutch plate, and torque converter cavities using telemetry to transfer the data. The torque converter was placed in a six-speed front wheel drive transmission and a test cell was built to drive and load the transmission to mimic in-vehicle performance.

Steady state tests were completed to establish a baseline for pressure performance of the torque converter. The transient events tested include back drive and gear shifting. Back drive showed how the pressure fluctuates across the speed ratios above 1 as well as identifying the stator speed. Gear ...


Effect Of Sensor Errors On Autonomous Steering Control And Application Of Sensor Fusion For Robust Navigation, Shuvodeep Bhattacharjya Jan 2019

Effect Of Sensor Errors On Autonomous Steering Control And Application Of Sensor Fusion For Robust Navigation, Shuvodeep Bhattacharjya

Dissertations, Master's Theses and Master's Reports

Autonomous steering control is one the most important features in autonomous vehicle navigation. The nature and tuning of the controller decides how well the vehicle follows a defined trajectory. A poorly tuned controller can cause the vehicle to oversteer or understeer at turns leading to deviation from a defined path. However, controller performance also depends on the state–feedback system. If the states used for controller input are noisy or has bias / systematic error, the navigation performance of the vehicle is affected irrespective of the control law and controller tuning. In this report, autonomous steering controller analysis is done for ...


Mpc-Based Autonomous Driving Control With Localized Path Planning For Obstacle Avoidance And Navigating Signalized Intersections, Sai Rajeev Devaragudi Jan 2019

Mpc-Based Autonomous Driving Control With Localized Path Planning For Obstacle Avoidance And Navigating Signalized Intersections, Sai Rajeev Devaragudi

Dissertations, Master's Theses and Master's Reports

Connected and autonomous vehicles are becoming the major focus of research for the industry and academia in the automotive field. Many companies and research groups have demonstrated the advantages and the requirement of such technology to improve the energy efficiency of vehicles, decrease the number of crash and road accidents, and control emissions.

This research delves into improving the autonomy of self-driving vehicles by implementing localized path planning algorithms to introduce motion control for obstacle avoidance during uncertainties. Lateral path planning is implemented using the A* algorithm combined with piecewise Bezier curve generation which provides an optimum trajectory reference to ...


Modeling And Control Of Maximum Pressure Rise Rate In Rcci Engines, Aditya Basina Jan 2019

Modeling And Control Of Maximum Pressure Rise Rate In Rcci Engines, Aditya Basina

Dissertations, Master's Theses and Master's Reports

Low Temperature Combustion (LTC) is a combustion strategy that burns fuel at lower temperatures and leaner mixtures in order to achieve high efficiency and near zero NOx emissions. Since the combustion happens at lower temperatures it inhibits the formation of NOx and soot emissions. One such strategy is Reactivity Controlled Compression Ignition (RCCI). One characteristic of RCCI combustion and LTC com- bustion in general is short burn durations which leads to high Pressure Rise Rates (PRR). This limits the operation of these engines to lower loads as at high loads, the Maximum Pressure Rise Rate (MPRR) hinders the use of ...


Modeling Of Thermal Dynamics In Chevrolet Volt Gen Ii Hybrid Electric Vehicle For Integrated Powertrain And Hvac Optimal Operation Through Connectivity, Nehal Doshi Jan 2019

Modeling Of Thermal Dynamics In Chevrolet Volt Gen Ii Hybrid Electric Vehicle For Integrated Powertrain And Hvac Optimal Operation Through Connectivity, Nehal Doshi

Dissertations, Master's Theses and Master's Reports

Integrated thermal energy management across system level components in electric vehicles (EVs) and hybrid electric vehicles (HEVs) is currently an under explored space. The proliferation of connected vehicles and accompanying infrastructure in recent years provides additional motivation to explore opportunities in optimizing thermal energy management in EVs and HEVs with the help of this newly available connected vehicle data. This thesis aims to examine and analyze the potential to mitigate vehicle energy consumption and extend usable driving range through optimal control strategies which exploit physical system dynamics via controls integration of vehicle subsystems.

In this study, data-driven and physics-based models ...


Control Oriented Modeling Of An Automotive Drivetrain For Anti-Jerk Control, Gurijala Venkat Prithvi Reddy Jan 2018

Control Oriented Modeling Of An Automotive Drivetrain For Anti-Jerk Control, Gurijala Venkat Prithvi Reddy

Dissertations, Master's Theses and Master's Reports

Drivability is an important metric during the development of an automobile. Calibration engineers spend a significant amount of time trying to improve the drivability of vehicles for various driving conditions. With an increase in the available computational power in an automobile, novel model-based methods are being implemented for further improving the drivability, while reducing calibration time and effort. Phenomenon known as clunk and shuffle, which are caused due to backlash and compliance in the driveline, are a major cause of issues related to drivability and noise, vibration and harshness (NVH) during tip-in and tip-out scenarios.

This thesis focuses on developing ...


Spray And Combustion Studies Of High Reactivity Gasoline In Comparison To Diesel Under Advanced Compression Ignition Engine Conditions, Meng Tang Jan 2018

Spray And Combustion Studies Of High Reactivity Gasoline In Comparison To Diesel Under Advanced Compression Ignition Engine Conditions, Meng Tang

Dissertations, Master's Theses and Master's Reports

Gasoline compression ignition (GCI) technology has demonstrated great potentials in improving fuel economy and reducing engine-out NOx and particulate matter emissions. Development and application of the GCI technology on multi-cylinder engines require both fundamental understandings of the gasoline spray combustion characteristics and accurate numerical tools. Due to the large differences in the thermo-physical and the chemical properties between gasoline and diesel range fuels, differences in the spray combustion characteristics between gasoline and diesel is expected. Reports on the gasoline spray combustion characteristics under conditions relevant to medium to heavy-duty engines are scarce and this dissertation aims to fill in ...


Study Of Obstacle Effect On The Gpsr Protocol And A Novel Intelligent Greedy Routing Protocol For Vanets, Ravikumar Chilmula Jan 2018

Study Of Obstacle Effect On The Gpsr Protocol And A Novel Intelligent Greedy Routing Protocol For Vanets, Ravikumar Chilmula

Dissertations, Master's Theses and Master's Reports

In recent years, connected vehicle technologies have been developed by automotive companies, academia, and researchers as part of Intelligent Transportation Systems (ITS). This group of stakeholders continue to work on these technologies to make them as reliable and cost-effective as possible. This attention is because of the increasing connected vehicles safety-related, entertainment, and traffic management applications, which have the potential to decrease the number of road accidents, save fuel and time for millions of daily commuters worldwide.

Vehicular Ad-Hoc Network (VANET), which is a subgroup of Mobile Ad-Hoc Network (MANET), is being developed and implemented in vehicles as the critical ...


Modeling And Analysis For Driveline Jerk Control, Prince Lakhani Jan 2018

Modeling And Analysis For Driveline Jerk Control, Prince Lakhani

Dissertations, Master's Theses and Master's Reports

In modern-day automotive industry, automotive manufacturers pay keen attention to driver’s safety and comfort by ensuring good vehicle drivability, feel of acceleration, limiting jerk and noise. The vehicle driveline plays a critical role to meet these criteria. By using high-fidelity simulation tool such as AMESim®, it is now possible to accurately model the vehicle driveline to be tested for different scenarios. With Simulink®, one can develop an efficient torque-based control system to limit the driveline oscillations and the generated noise. So, a joint simulation is used which provides a platform to evaluate the estimators and control system while considering ...


Video Frame Reduction In Autonomous Vehicles, Gaurav R. Bagwe Jan 2018

Video Frame Reduction In Autonomous Vehicles, Gaurav R. Bagwe

Dissertations, Master's Theses and Master's Reports

Camera sensors are emerging in many applications such as Smart Buildings and autonomous driving. The Data generated by multiple cameras in a smart building and autonomous driving applications is usually transmitted through an edge box to a cloud terminal. This transmitted information requires a considerable channel bandwidth, which is not available through current communication standards. The report proposes a Camera Sensor Frame Reduction method to decrease the required channel bandwidth for applications such as autonomous driving.

Here, we propose a method that incorporates cross frame similarity measurement method to reduce the redundant frames and decrease the data rate of each ...


Model-Based Control Of Hybrid Electric Powertrains Integrated With Low Temperature Combustion Engines, Ali Soloukmofrad Jan 2017

Model-Based Control Of Hybrid Electric Powertrains Integrated With Low Temperature Combustion Engines, Ali Soloukmofrad

Dissertations, Master's Theses and Master's Reports

Powertrain electrification including hybridizing advanced combustion engines is a viable cost-effective solution to improve fuel economy of vehicles. This will provide opportunity for narrow-range high-efficiency combustion regimes to be able to operate and consequently improve vehicle’s fuel conversion efficiency, compared to conventional hybrid electric vehicles (HEV)s. Low temperature combustion (LTC) engines offer the highest peak brake thermal efficiency reported in literature, but these engines have narrow operating range. In addition, LTC engines have ultra-low soot and nitrogen oxides (NOx) emissions, compared to conventional compression ignition and spark ignition (SI) engines. This dissertation concentrates on integrating the LTC engines ...


Easily Verifiable Controller Design With Application To Automotive Powertrains, Mohammad Reza Amini Jan 2017

Easily Verifiable Controller Design With Application To Automotive Powertrains, Mohammad Reza Amini

Dissertations, Master's Theses and Master's Reports

Bridging the gap between designed and implemented model-based controllers is a major challenge in the design cycle of industrial controllers. This gap is mainly created due to (i) digital implementation of controller software that introduces sampling and quantization imprecisions via analog-to-digital conversion (ADC), and (ii) uncertainties in the modeled plant’s dynamics, which directly propagate through the controller structure. The failure to identify and handle these implementation and model uncertainties results in undesirable controller performance and costly iterative loops for completing the controller verification and validation (V&V) process.

This PhD dissertation develops a novel theoretical framework to design controllers ...


Development Of A High-Fidelity Model And Kalman Filter Based State Estimator For Simulation And Control Of Nox Reduction Performance Of A Scr Catalyst On A Dpf, Venkata Rajesh Chundru Jan 2017

Development Of A High-Fidelity Model And Kalman Filter Based State Estimator For Simulation And Control Of Nox Reduction Performance Of A Scr Catalyst On A Dpf, Venkata Rajesh Chundru

Dissertations, Master's Theses and Master's Reports

Reduction of emissions and improving the fuel consumption are two prime research areas in Diesel engine development. The present after-treatment systems being used for emissions control include diesel oxidation catalyst (DOC) for NO, HC and CO oxidation along with catalyzed particulate filters for PM (particulate matter) and selective catalytic reduction (SCR) for controlling NOx emissions. Recently an after-treatment system called SCR catalyst on a DPF capable of simultaneously reducing both NOx and PM emissions has been developed in order to reduce the overall size of the after-treatment system.

The goal of this proposed research is to create a state estimator ...


Simulation Study On Effect Of Gas Charging And Egr In A Dual-Fuel Engine, Satyavenkata Naga Sai Sharath Gorthy Jan 2017

Simulation Study On Effect Of Gas Charging And Egr In A Dual-Fuel Engine, Satyavenkata Naga Sai Sharath Gorthy

Dissertations, Master's Theses and Master's Reports

Natural gas combined with diesel as micro pilot has the capabilities of achieving lower NOx and soot emissions. Optimization of the combustion process in engines with natural gas and diesel micro-pilot is essential to achieve higher efficiencies and loads. Gas charging (intake air boosting) and EGR are two technologies which when implemented in the natural gas-diesel engines, provide the opportunity to achieve higher efficiencies and loads and low emissions. Simulation study is one of the approaches to investigate the extent and effects of gas charging and EGR on the performance of the engine. With the rapid improvements over the past ...


An Optimal Energy Management Strategy For Hybrid Electric Vehicles, Amir Rezaei Jan 2017

An Optimal Energy Management Strategy For Hybrid Electric Vehicles, Amir Rezaei

Dissertations, Master's Theses and Master's Reports

Hybrid Electric Vehicles (HEVs) are used to overcome the short-range and long charging time problems of purely electric vehicles. HEVs have at least two power sources. Therefore, the Energy Management (EM) strategy for dividing the driver requested power between the available power sources plays an important role in achieving good HEV performance.

This work, proposes a novel real-time EM strategy for HEVs which is named ECMS-CESO. ECMS-CESO is based on the Equivalent Consumption Minimization Strategy (ECMS) and is designed to Catch Energy Saving Opportunities (CESO) while operating the vehicle. ECMS-CESO is an instantaneous optimal controller, i. e., it does not ...


Effect Of Spark Advance And Fuel On Knocking Tendency Of Spark Ignited Engine, Abhay S. Joshi Jan 2017

Effect Of Spark Advance And Fuel On Knocking Tendency Of Spark Ignited Engine, Abhay S. Joshi

Dissertations, Master's Theses and Master's Reports

Knock, in spark ignition engine is the combustion caused by the autoignition of the fuel-air mixture. It is the phenomenon that limits engine performance and thermal efficiency. Knock also has an adverse effect on emissions and fuel economy. Engine designers target engines with maximum power and torque output without compromising on fuel economy. Engine downsizing is the method generally adopted. The main goal of engine downsizing is to achieve better fuel economy while increasing the power and torque output of the engine. Better fuel economy is achieved by reducing the displaced volume which in turn means a much higher brake ...


Experimental Study, Modelling And Controller Design For An Rcci Engine, Naga Nithin Teja Kondipati Jan 2016

Experimental Study, Modelling And Controller Design For An Rcci Engine, Naga Nithin Teja Kondipati

Dissertations, Master's Theses and Master's Reports

Low Temperature Combustion (LTC) has got widespread attention over the past two decades in the field of Automotive Research and Development due to it’s potential for achieving higher efficiencies with near-zero engine out NOx and soot emissions. Among all the LTC strategies Reactivity controlled compression ignition (RCCI) has shown the most promising results due to it’s precise control over combustion phasing and heat release rate. However, RCCI being a dual-fuel stratified combustion, precise control over the injection timing of direct injected fuel and in-cylinder fuel reactivity of the mixture needs to be controlled effectively in order to achieve ...


Restraint System Design And Evaluation For Military Specific Applications, Sebastian Karwaczynski Jan 2016

Restraint System Design And Evaluation For Military Specific Applications, Sebastian Karwaczynski

Dissertations, Master's Theses and Master's Reports

This research focuses on designing an optimal restraint system for usage in a military vehicle applications. The designed restraint system must accommodate a wide range of DHM’s and ATD’s with and without PPE such as: helmet, boots, and body armor. The evaluation of the restraint systems were conducted in a simulated vehicle environment, which was utilized to downselect the ideal restraint system for this program.

In December of 2011 the OCP TECD program was formulated to increase occupant protection. To do this, 3D computer models were created to accommodate the entire Soldier population in the Army. These models ...


Design Of Real-Time Combustion Feedback System And Experimental Study Of An Rcci Engine For Control, Jayant Kumar Arora Jan 2016

Design Of Real-Time Combustion Feedback System And Experimental Study Of An Rcci Engine For Control, Jayant Kumar Arora

Dissertations, Master's Theses and Master's Reports

Premixed compression ignition (PCI) technologies offer high efficiency and low emissions but are usually confined by limited operation range as well as high pressure rise and heat release rate. In this work, a more recently developed PCI mode is explored where in-cylinder blending of two fuels with different auto-ignition characteristics (diesel and gasoline) is utilized to create reactivity stratification such that heat release rate and combustion timing can be controlled. This mode has been defined as Reactivity Controlled Compression Ignition (RCCI).

As part of this thesis, the main aim is to study various parameters that can be used to control ...


Integration And Testing Of An Advanced Conformable Cng Tank In A Full-Sized Light-Duty Pickup, Abayomi Famuyiwa Jan 2016

Integration And Testing Of An Advanced Conformable Cng Tank In A Full-Sized Light-Duty Pickup, Abayomi Famuyiwa

Dissertations, Master's Theses and Master's Reports

Michigan Technological University is collaborating with Southwestern Energy and REL Inc. to develop and integrate a compressed natural gas (CNG) matrix tank that enables efficient packaging, increases range, and reduced cost for CNG vehicle applications. The vehicle being used in this project is a light-duty pickup truck to take advantage of the open space underneath the body and bed of the vehicle. With today’s cylindrical CNG tanks consuming cargo space, a solution is to develop a tank capable of being shaping to the underbody of the truck to free cargo space. University faculty and graduate students utilizes Finite Element ...