Open Access. Powered by Scholars. Published by Universities.®

Automotive Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Automotive Engineering

The Effects Of Molybdenum, Chromium, And Niobium On Gray Iron For Brake Rotor Applications, Matthew Hasbrouck Jan 2021

The Effects Of Molybdenum, Chromium, And Niobium On Gray Iron For Brake Rotor Applications, Matthew Hasbrouck

Dissertations, Master's Theses and Master's Reports

Brake rotor composition and microstructure must be optimized for thermal and mechanical performance to avoid thermal-mechanical cracking, excessive wear, and to reduce noise. Niobium is an element that increases the strength and wear resistance of gray iron; however, the interaction of niobium with other common alloying elements (chromium and molybdenum) is not well understood. Thirteen gray cast iron alloys were produced with varying levels of carbon equivalent (CE), Cr, Mo, and Nb. Bars with four different diameters (8, 14, 22, and 30 mm) were cast from each alloy and microstructural and physical properties such as graphite flake morphology, pearlite spacing, …


Experimental And Numerical Simulation Of Split Hopkinson Pressure Bar Test On Borosilicate Glass, Mayank K. Bagaria Jan 2019

Experimental And Numerical Simulation Of Split Hopkinson Pressure Bar Test On Borosilicate Glass, Mayank K. Bagaria

Dissertations, Master's Theses and Master's Reports

This study is an extension to the design of ceramic materials component exposed to bullet impact. Owing to the brittle nature of ceramics upon bullet impact, shattered pieces behave as pellets flying with different velocities and directions, damaging surrounding components. Testing to study the behavior of ceramics under ballistic impact can be cumbersome and expensive. Modeling the set-up through Finite Element Analysis (FEA) makes it economical and easy to optimize. However, appropriately incorporating the material in modeling makes laboratory testing essential. Previous efforts have concentrated on simulating crack pattern developed during 0.22 caliber pellet impact on Borosilicate glass. A major …