Open Access. Powered by Scholars. Published by Universities.®

Navigation, Guidance, Control and Dynamics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 7 of 7

Full-Text Articles in Navigation, Guidance, Control and Dynamics

Motion Planning In Artificial And Natural Vector Fields, Bernardo Martinez Rocamora Junior Jan 2023

Motion Planning In Artificial And Natural Vector Fields, Bernardo Martinez Rocamora Junior

Graduate Theses, Dissertations, and Problem Reports

This dissertation advances the field of autonomous vehicle motion planning in various challenging environments, ranging from flows and planetary atmospheres to cluttered real-world scenarios. By addressing the challenge of navigating environmental flows, this work introduces the Flow-Aware Fast Marching Tree algorithm (FlowFMT*). This algorithm optimizes motion planning for unmanned vehicles, such as UAVs and AUVs, navigating in tridimensional static flows. By considering reachability constraints caused by vehicle and flow dynamics, flow-aware neighborhood sets are found and used to reduce the number of calls to the cost function. The method computes feasible and optimal trajectories from start to goal in challenging …


Trajectory Generation For A Multibody Robotic System: Modern Methods Based On Product Of Exponentials, Aryslan Malik Dec 2021

Trajectory Generation For A Multibody Robotic System: Modern Methods Based On Product Of Exponentials, Aryslan Malik

Doctoral Dissertations and Master's Theses

This work presents several trajectory generation algorithms for multibody robotic systems based on the Product of Exponentials (PoE) formulation, also known as screw theory. A PoE formulation is first developed to model the kinematics and dynamics of a multibody robotic manipulator (Sawyer Robot) with 7 revolute joints and an end-effector.

In the first method, an Inverse Kinematics (IK) algorithm based on the Newton-Raphson iterative method is applied to generate constrained joint-space trajectories corresponding to straight-line and curvilinear motions of the end effector in Cartesian space with finite jerk. The second approach describes Constant Screw Axis (CSA) trajectories which are generated …


Planning Algorithms Under Uncertainty For A Team Of A Uav And A Ugv For Underground Exploration, Matteo De Petrillo Jan 2021

Planning Algorithms Under Uncertainty For A Team Of A Uav And A Ugv For Underground Exploration, Matteo De Petrillo

Graduate Theses, Dissertations, and Problem Reports

Robots’ autonomy has been studied for decades in different environments, but only recently, thanks to the advance in technology and interests, robots for underground exploration gained more attention. Due to the many challenges that any robot must face in such harsh environments, this remains an challenging and complex problem to solve.

As technology became cheaper and more accessible, the use of robots for underground ex- ploration increased. One of the main challenges is concerned with robot localization, which is not easily provided by any Global Navigation Services System (GNSS). Many developments have been achieved for indoor mobile ground robots, making …


Uncertainty Estimation For Stereo Visual Odometry, Derek W. Ross Jan 2021

Uncertainty Estimation For Stereo Visual Odometry, Derek W. Ross

Graduate Theses, Dissertations, and Problem Reports

Over the past few decades, unmanned aerial vehicles (UAVs) have been increasingly popular for use in locations that are lacking, or have unreliable global navigation satellite system (GNSS) availability. One of the more popular localization techniques for quadrotors is the use of visual odometry (VO) through monocular, RGB-D, or stereo cameras. With primary applications in the context of Simultaneous Localization And Mapping (SLAM) and indoor navigation, VO is largely used in combination with other sensors through Bayesian filters, namely Extended Kalman Filter (EKF) or Particle Filter. This work investigates the accuracy of two standard covariance estimation techniques for a feature-based …


Active Localization For Robotic Systems: Algorithms And Cost Metrics, Jared Strader Jan 2021

Active Localization For Robotic Systems: Algorithms And Cost Metrics, Jared Strader

Graduate Theses, Dissertations, and Problem Reports

In the real world, a robotic system must operate in the presence of motion and sensing uncertainty. This is caused by the fact that the motion of a robotic system is stochastic due to disturbances from the environment, and the states are only partially observable due noise in the sensor measurements. As a result, the true state of a robotic system is unknown, and estimation techniques must be used to infer the states from the belief, which is the probability distribution over all possible states. Accordingly, a robotic system must be capable of reasoning about the quality of the belief …


Adaptive Control For Autonomous Navigation Of Mobile Robots Considering Time Delay And Uncertainty, Stephen Kofi Armah Jan 2015

Adaptive Control For Autonomous Navigation Of Mobile Robots Considering Time Delay And Uncertainty, Stephen Kofi Armah

Dissertations

Autonomous control of mobile robots has attracted considerable attention of researchers in the areas of robotics and autonomous systems during the past decades. One of the goals in the field of mobile robotics is development of platforms that robustly operate in given, partially unknown, or unpredictable environments and offer desired services to humans. Autonomous mobile robots need to be equipped with effective, robust and/or adaptive, navigation control systems. In spite of enormous reported work on autonomous navigation control systems for mobile robots, achieving the goal above is still an open problem. Robustness and reliability of the controlled system can always …


Singularity Avoidance Strategies For Satellite Mounted Manipulators Using Attitude Control, Nathan A. Titus Jun 1998

Singularity Avoidance Strategies For Satellite Mounted Manipulators Using Attitude Control, Nathan A. Titus

Theses and Dissertations

Control concepts for satellite mounted manipulators (SMM) are examined. The primary focus is on base actuated concepts, which eliminate singularity problems associated with free floating SMMs. A new form of the equations of motion for an n-link SMM is developed using a quasi coordinate form of Lagrange's Equation. Alternative free floating SMM designs are presented which eliminate dynamic singularities, but still experience difficulties due to the unactuated base. A new generic SMM controller is developed as a framework for various control concepts with and without base actuation. Momentum constrained Jacobians are shown to produce better SMM tracking than fixed base …