Open Access. Powered by Scholars. Published by Universities.®

Navigation, Guidance, Control and Dynamics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 8 of 8

Full-Text Articles in Navigation, Guidance, Control and Dynamics

Formation Control With Collision Avoidance For Fixed-Wing Unmanned Air Vehicles With Speed Constraints, Christopher Heintz Jan 2022

Formation Control With Collision Avoidance For Fixed-Wing Unmanned Air Vehicles With Speed Constraints, Christopher Heintz

Theses and Dissertations--Mechanical Engineering

Advances in the miniaturization of powerful electronic components and motors, the democratization of global navigation satellite systems (GNSS), and improvements in the performance, safety, and cost in lithium batteries has led to the proliferation of small and relatively inexpensive unmanned aerial vehicles (UAVs). Many of these UAVs are of the multi-rotor design, however, fixed-wing designs are often more efficient than rotary-wing aircraft, leading to a reduction in the power required for a UAV of a given mass to stay airborne. Autonomous cooperation between multiple UAVs would enable them to complete objectives that would be difficult or impossible for a single …


Simulation Of A Configurable Hybrid Aircraft, Brandon Bartlett Jun 2021

Simulation Of A Configurable Hybrid Aircraft, Brandon Bartlett

Master's Theses

As the demand for air transportation is projected to increase, the environmental impacts produced by air travel will also increase. In order to counter the environmental impacts while also meeting the demand for air travel, there are goals and research initiatives that aim to develop more efficient aircraft. An emerging technology that supports these goals is the application of hybrid propulsion to aircraft, but there is a challenge in effectively exploring the performance of hybrid aircraft due to the time and money required for safe flight testing and due to the diverse design space of hybrid architectures and components. Therefore, …


Find Your Center, Nihad E. Daidzic Apr 2017

Find Your Center, Nihad E. Daidzic

Aviation Department Publications

No abstract provided.


Integrated Collision Avoidance System Sensor Evaluation Final Design Project, Alex F. Graebe, Bridgette S. Kimball, Drew T. Lavoise Jun 2013

Integrated Collision Avoidance System Sensor Evaluation Final Design Project, Alex F. Graebe, Bridgette S. Kimball, Drew T. Lavoise

Mechanical Engineering

Following the development of Aircraft Collision Avoidance Technology (ACAT) by the National Aeronautics and Space Administration (NASA), a need arose to transition the life-saving technology to aid the general aviation community. Considering the realistic cost of implementation, it was decided that the technology should be adapted to function on any smartphone, using that device as an end-to-end solution to sense, process, and alert the pilot to imminent threats. In September of 2012, the SAS (Sense and Survive) Senior Project Team at California Polytechnic University (Cal Poly), San Luis Obispo was assigned the task of using smartphone technology to accurately sense …


Avoiding Aircraft Icing Accidents, Nihad E. Daidzic Oct 2009

Avoiding Aircraft Icing Accidents, Nihad E. Daidzic

Aviation Department Publications

No abstract provided.


Aircraft Landing Operations On Contaminated Runways, Nihad E. Daidzic Apr 2009

Aircraft Landing Operations On Contaminated Runways, Nihad E. Daidzic

Aviation Department Publications

No abstract provided.


Raising The Dead, Nihad E. Daidzic Aug 2008

Raising The Dead, Nihad E. Daidzic

Aviation Department Publications

No abstract provided.


Assessment Of Preliminary Design Approaches For Metallic Stiffened Cylindrical Shell Instability Problems, Vicki Owen Britt Apr 2007

Assessment Of Preliminary Design Approaches For Metallic Stiffened Cylindrical Shell Instability Problems, Vicki Owen Britt

Mechanical & Aerospace Engineering Theses & Dissertations

A preliminary design tool for metallic stiffened fuselage cylindrical panels subjected to longitudinal compression has been developed and validated by comparison to test results. Several methodologies for stiffened panel buckling and failure predictions were examined and evaluated. An appropriate level of analysis fidelity was determined for different failure modes and design details. Results from panel tests conducted to verify analytical methods used to design the Gulfstream V aircraft were presented. The panels were representative of four general skin/stringer configurations on the aircraft. Finite Element analyses and standard analytical methods were used to predict panel failure loads. The accuracy of the …