Open Access. Powered by Scholars. Published by Universities.®

Navigation, Guidance, Control and Dynamics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 30 of 50

Full-Text Articles in Navigation, Guidance, Control and Dynamics

Gyroless Nanosatellite Attitude Determination Using An Array Of Spatially Distributed Accelerometers, Kory J. Haydon Jun 2023

Gyroless Nanosatellite Attitude Determination Using An Array Of Spatially Distributed Accelerometers, Kory J. Haydon

Master's Theses

The low size and budget of typical nanosatellite missions limit the available sensors for attitude estimation. Relatively high noise MEMS gyroscopes often must be employed when accurate knowledge of the spacecraft’s angular velocity is necessary for attitude determination and control. This thesis derived and tested in simulation the “Virtual Gyroscope” algorithm, which replaced a standard gyroscope with an array of spatially distributed accelerometers for a 1U CubeSat mission. A MEMS accelerometer model was developed and validated using Root Allan Variance, and the Virtual Gyroscope was tested both in the open loop configuration and as a replacement for a gyroscope in …


Distributed Control Of Servicing Satellite Fleet Using Horizon Simulation Framework, Scott Plantenga Jun 2023

Distributed Control Of Servicing Satellite Fleet Using Horizon Simulation Framework, Scott Plantenga

Master's Theses

On-orbit satellite servicing is critical to maximizing space utilization and sustainability and is of growing interest for commercial, civil, and defense applications. Reliance on astronauts or anchored robotic arms for the servicing of next-generation large, complex space structures operating beyond Low Earth Orbit is impractical. Substantial literature has investigated the mission design and analysis of robotic servicing missions that utilize a single servicing satellite to approach and service a single target satellite. This motivates the present research to investigate a fleet of servicing satellites performing several operations for a large, central space structure.

This research leverages a distributed control approach, …


Autonomous Attitude Consensus For Nanosatellite Formations In Leo, Laird J. Mendelson Jun 2023

Autonomous Attitude Consensus For Nanosatellite Formations In Leo, Laird J. Mendelson

Master's Theses

Consensus strategies are examined as a possible approach to achieving attitude alignment for a large, close-proximity formation of nanosatellites in low earth orbit (LEO). An attitude-only distributed consensus approach is selected for further consideration due to its comparatively low data transmission requirements. The convergence of a connected network of satellites to the attitude agreement subspace under this control law is shown using a Lyapunov stability approach with a set of idealizing assumptions. A moderate-fidelity simulation demonstrates the performance of the control law under realistic conditions that violate those assumptions. Particular emphasis is placed on the conditions that arise from the …


Developing A Light Curve Simulation Tool For Ground And Space-Based Observations Of Spacecraft And Debris, Andrew T. Ochoa Dec 2021

Developing A Light Curve Simulation Tool For Ground And Space-Based Observations Of Spacecraft And Debris, Andrew T. Ochoa

Master's Theses

A light curve is a plot of brightness versus time of an object. Light curves are dependent on orbit, attitude, surface area, size, and shape of the observed object. Using light curve data, several analysis methods have been developed to derive these parameters. These parameters can be used for tracking orbital debris, monitoring satellite health, and determining the mission of an unknown spacecraft.

This paper discusses the development, verification, and utilization of a tool that simulates light curve data. This tool models ground-based observations, space-based observations, self-shadowing geometry, tumbling debris, and controlled spacecraft. The main output from the tool is …


Interior Point Optimization Of Low-Thrust Spacecraft Trajectories, Jordan D. Frederiksen Aug 2021

Interior Point Optimization Of Low-Thrust Spacecraft Trajectories, Jordan D. Frederiksen

Master's Theses

Low-thrust interplanetary spacecraft trajectory optimization poses a uniquely difficult problem to solve because of the inherent nonlinearities of the dynamics and constraints as well as the large size of the search space of possible solutions. Tools currently exist that optimize low-thrust interplanetary trajectories, but these tools are rarely openly available to the public, and when they are available they require multiple interfaces between multiple different packages. The goal of this work is to present a new piece of low-thrust interplanetary spacecraft trajectory optimization software that is open-source and entirely self-contained so that more people can have access to the ability …


Simulation Of A Configurable Hybrid Aircraft, Brandon Bartlett Jun 2021

Simulation Of A Configurable Hybrid Aircraft, Brandon Bartlett

Master's Theses

As the demand for air transportation is projected to increase, the environmental impacts produced by air travel will also increase. In order to counter the environmental impacts while also meeting the demand for air travel, there are goals and research initiatives that aim to develop more efficient aircraft. An emerging technology that supports these goals is the application of hybrid propulsion to aircraft, but there is a challenge in effectively exploring the performance of hybrid aircraft due to the time and money required for safe flight testing and due to the diverse design space of hybrid architectures and components. Therefore, …


Passive Disposal Of Launch Vehicle Stages In Geostationary Transfer Orbits Leveraging Small Satellite Technologies, Marc Alexander Galles Jun 2021

Passive Disposal Of Launch Vehicle Stages In Geostationary Transfer Orbits Leveraging Small Satellite Technologies, Marc Alexander Galles

Master's Theses

Once a satellite has completed its operational period, it must be removed responsibly in order to reduce the risk of impacting other missions. Geostationary Transfer Orbits (GTOs) offer unique challenges when considering disposal of spacecraft, as high eccentricity and orbital energy give rise to unique challenges for spacecraft designers. By leveraging small satellite research and integration techniques, a deployable drag sail module was analyzed that can shorten the expected orbit time of launch vehicle stages in GTO. A tool was developed to efficiently model spacecraft trajectories over long periods of time, which allowed for analysis of an object’s expected lifetime …


Low-Cost Reaction Wheel Design For Cubesat Applications, Nicholas J. Bonafede Jr. Aug 2020

Low-Cost Reaction Wheel Design For Cubesat Applications, Nicholas J. Bonafede Jr.

Master's Theses

As science instruments on CubeSats become more sensitive to the attitude of the spacecraft, better methods must be employed to provide the accuracy needed to complete the planned mission. While systems that provide the accuracy required are available commercially, these solutions are not cost-effective, do not allow the design to be tailored to a specific mission, and most importantly, do not give students hand-on experience with attitude control actuators. This thesis documents the design, modeling, and simulation of a low-cost, student-fabricated, reaction wheel system for use in 3U CubeSat satellites. The entire design process for the development of this reaction …


Three Axis Attitude Control System Design And Analysis Tool Development For The Cal Poly Cubesat Laboratory, Liam T. Bruno Jun 2020

Three Axis Attitude Control System Design And Analysis Tool Development For The Cal Poly Cubesat Laboratory, Liam T. Bruno

Master's Theses

The Cal Poly CubeSat Laboratory (CPCL) is currently facing unprecedented engineering challenges—both technically and programmatically—due to the increasing cost and complexity of CubeSat flight missions. In responding to recent RFPs, the CPCL has been forced to find commercially available solutions to entire mission critical spacecraft subsystems such as propulsion and attitude determination & control, because currently no in-house options exist for consideration. The commercially available solutions for these subsystems are often extremely expensive and sometimes provide excessively good performance with respect to mission requirements. Furthermore, use of entire commercial subsystems detracts from the hands-on learning objectives of the CPCL by …


Conceptual Design Of A South Pole Carrier Pigeon Uav, Kendrick M. Dlima Jun 2020

Conceptual Design Of A South Pole Carrier Pigeon Uav, Kendrick M. Dlima

Master's Theses

Currently, the South Pole has a large data problem. It is estimated that 1.2 TB of data is being produced every day, but less than 500 GB of that data is being uploaded via aging satellites to researchers in other parts of the world. This requires those at the South Pole to analyze the data and carefully select the parts to send, possibly missing out on vital scientific information. The South Pole Carrier Pigeon will look to bridge this data gap.

The Carrier Pigeon will be a small unmanned aerial vehicle that will carry a 30 TB solid-state hard drive …


Navigational Feasibility Of Flyby / Impact Missions To Interstellar Objects, Declan Moore Mages Dec 2019

Navigational Feasibility Of Flyby / Impact Missions To Interstellar Objects, Declan Moore Mages

Master's Theses

In October 2017, the first interstellar object, designated 1I/2017 U1 and more commonly referred to as Oumuamua, was detected passing through our solar system by the Pan-STARRS telescope, followed recently by the detection of 2I/Borisov in August 2019. These detections came much sooner than thought possible, and have redefined our understanding of the population of interstellar objects. With the construction of the next generation of powerful observatories, future detections are estimated to occur as frequently as two per year, and while there is significant scientific understanding to be gained from observing these objects remotely, a spacecraft sent to intercept one …


Generating Exploration Mission-3 Trajectories To A 9:2 Nrho Using Machine Learning, Esteban Guzman Dec 2018

Generating Exploration Mission-3 Trajectories To A 9:2 Nrho Using Machine Learning, Esteban Guzman

Master's Theses

The purpose of this thesis is to design a machine learning algorithm platform that provides expanded knowledge of mission availability through a launch season by improving trajectory resolution and introducing launch mission forecasting. The specific scenario addressed in this paper is one in which data is provided for four deterministic translational maneuvers through a mission to a Near Rectilinear Halo Orbit (NRHO) with a 9:2 synodic frequency. Current launch availability knowledge under NASA’s Orion Orbit Performance Team is established by altering optimization variables associated to given reference launch epochs. This current method can be an abstract task and relies on …


Determining Feasibility Of A Propulsionless Microsatellite Formation Flight Mission, Aaron Levis Jun 2018

Determining Feasibility Of A Propulsionless Microsatellite Formation Flight Mission, Aaron Levis

Master's Theses

Benefits of developing missions with multiple formation flying spacecraft as an alternative to a traditional monolithic vehicle are becoming apparent. In some cases, these missions can lower cost and increase flexibility among other situational advantages. However, there are various limitations that are imposed by these missions that are centered on the concept of maintaining the necessary formation. One such limitation is that of the propulsion system required for each spacecraft. To mitigate the complexity and mass of the onboard propulsion, the pairing of electromagnetic actuators and differential drag to replace the functionality of a propulsive system is investigated. By using …


Orbital Constellation Design And Analysis Using Spherical Trigonometry And Genetic Algorithms: A Mission Level Design Tool For Single Point Coverage On Any Planet, Joseph R. Gagliano Jun 2018

Orbital Constellation Design And Analysis Using Spherical Trigonometry And Genetic Algorithms: A Mission Level Design Tool For Single Point Coverage On Any Planet, Joseph R. Gagliano

Master's Theses

Recent interest surrounding large scale satellite constellations has increased analysis efforts to create the most efficient designs. Multiple studies have successfully optimized constellation patterns using equations of motion propagation methods and genetic algorithms to arrive at optimal solutions. However, these approaches are computationally expensive for large scale constellations, making them impractical for quick iterative design analysis. Therefore, a minimalist algorithm and efficient computational method could be used to improve solution times. This thesis will provide a tool for single target constellation optimization using spherical trigonometry propagation, and an evolutionary genetic algorithm based on a multi-objective optimization function. Each constellation will …


Modeling And Simulation Of A Sounding Rocket Active Stabilization System, Steven M. Maclean Jun 2017

Modeling And Simulation Of A Sounding Rocket Active Stabilization System, Steven M. Maclean

Master's Theses

The Horizon Simulation Framework is a modeling and simulation framework developed to verify system level requirements. In this thesis, the framework is extended to include the Dynamic position type that existed in the early development phase of the framework. The Dynamic position type is tested through the modeling and simulation of a sounding rocket. An active control system based on linear-quadratic regulator (LQR) control theory is implemented and tested in the simulation to determine the overall effect on altitude. A first order aerodynamics and aeroprediction model are created within the framework to allow for rapid changes early in the design …


Assessment Of Asymmetric Flight On Solar Uas, Eric Belfield Dec 2016

Assessment Of Asymmetric Flight On Solar Uas, Eric Belfield

Master's Theses

An investigation was conducted into the feasibility of using an unconventional flight technique, asymmetric flight, to improve overall efficiency of solar aircraft. In this study, asymmetric flight is defined as steady level flight in a non-wings-level state in- tended to improve solar incidence angle. By manipulating aircraft orientation through roll angle, solar energy collection is improved but aerodynamic efficiency is worsened due to the introduction of additional trim drag. A point performance model was devel- oped to investigate the trade-off between improvement in solar energy collection and additional drag associated with asymmetric flight. A mission model with a focus on …


A Solution To The Circular Restricted N Body Problem In Planetary Systems, Jay R. Iuliano Jun 2016

A Solution To The Circular Restricted N Body Problem In Planetary Systems, Jay R. Iuliano

Master's Theses

This thesis is a brief look at a new solution to a problem that has been approached in many different ways in the past - the N body problem. By focusing on planetary systems, satellite dynamics can be modeled in a fashion similar to the Circular Restricted Three Body Problem (CR3BP) with the Circular Restricted N Body Problem (CRNBP). It was found that this new formulation of the dynamics can then utilize the tools created from all the research into the CR3BP to reassess the possibility of different complex trajectories in systems where there are more than just two large …


Autonomous Formation Flying And Proximity Operations Using Differential Drag On The Mars Atmosphere, Andres Eduardo Villa Jun 2016

Autonomous Formation Flying And Proximity Operations Using Differential Drag On The Mars Atmosphere, Andres Eduardo Villa

Master's Theses

Due to mass and volume constraints on planetary missions, the development of control techniques that do not require fuel are of big interest. For those planets that have a dense enough atmosphere, aerodynamic drag can play an important role. The use of atmospheric differential drag for formation keeping was first proposed by Carolina L. Leonard in 1986, and has been proven to work in Earth atmosphere by many missions. Moreover, atmospheric drag has been used in the Mars atmosphere as aerobraking technique to decelerate landing vehicles, and to circularize the orbit of the spacecraft. Still, no literature was available related …


Control Of A Spacecraft Using Mixed Momentum Exchange Devices, Blake J. Currie Oct 2014

Control Of A Spacecraft Using Mixed Momentum Exchange Devices, Blake J. Currie

Master's Theses

Hardware configurations, a control law, and a steering law are developed for a mixed hardware spacecraft that uses both control moment gyros and reaction wheels. Replacing one or more gyros in a spacecraft with a reaction wheel has potential for cost savings while still achieving much greater performance than using reaction wheels alone. Several simulated tests are run to compare the performance to a traditional all reaction wheel or all control moment gyro spacecraft, including analysis of failure modes and singular configurations. The mixed system performed similarly to all gyro systems, responding within 6% of the gyro system’s time for …


Reduced-Order Reference Models For Adaptive Control Of Space Structures, Alexander I. Scherling Jun 2014

Reduced-Order Reference Models For Adaptive Control Of Space Structures, Alexander I. Scherling

Master's Theses

In addition to serving as a brief overview of aspects relevant to reduced-order modeling (in particular balanced-state and modal techniques) as applied to structural finite element models, this work produced tools for visualizing the relationship between the modes of a model and the states of its balanced representation.

Specifically, error contour and mean error plots were developed that provide a designer with frequency response information absent from a typical analysis of a balanced model via its Hankel singular values. The plots were then used to analyze the controllability and observability aspects of finite element models of an illustrative system from …


Modification Of The Cal Poly Spacecraft Simulator System For Robust Control Law Verification, Tomoyuki Kato Jun 2014

Modification Of The Cal Poly Spacecraft Simulator System For Robust Control Law Verification, Tomoyuki Kato

Master's Theses

The Cal Poly Spacecraft Dynamics Simulator, also known as the Pyramidal Reaction Wheel Platform (PRWP), is an air-bearing four reaction wheel spacecraft simulator designed to simulate the low-gravity, frictionless condition of the space environment and to test and validate spacecraft attitude control hardware and control laws through real-time motion tests. The PRWP system was modified to the new Mk.III configuration, which adopted the MATLAB xPC kernel for better real-time hardware control. Also the Litton LN-200 IMU was integrated onto the PRWP and replaced the previous attitude sensor. Through the comparison of various control laws through motion tests the Mk.III configuration …


Autonomous Close Formation Flight Of Small Uavs Using Vision-Based Localization, Michael B. Darling May 2014

Autonomous Close Formation Flight Of Small Uavs Using Vision-Based Localization, Michael B. Darling

Master's Theses

As Unmanned Aerial Vehicles (UAVs) are integrated into the national airspace to comply with the 2012 Federal Aviation Administration Reauthorization Act, new civilian uses for robotic aircraft will come about in addition to the more obvious military applications. One particular area of interest for UAV development is the autonomous cooperative control of multiple UAVs. In this thesis, a decentralized leader-follower control strategy is designed, implemented, and tested from the follower’s perspective using vision-based localization.

The tasks of localization and control were carried out with separate processing hardware dedicated to each task. First, software was written to estimate the relative state …


Applied Mass Properties Identification Method To The Cal Poly's Spacecraft Simulator, Long H. Dam Apr 2014

Applied Mass Properties Identification Method To The Cal Poly's Spacecraft Simulator, Long H. Dam

Master's Theses

The Cal Poly Spacecraft Simulator is currently being developed for future testing and verifying theoretical control applications. This paper details the effort to balance the platform and remove undesired external torque from the system using System Identification technique developed by Patrick Healy. Since the relationship between the input and output of the system is linear, the least square method is proposed to identify the mass properties and location of center of mass of the system. The tests use four sine wave generators that are out of phase with different amplitudes as the inputs to excite various structural modes of the …


Adaptive Control Techniques For Transition-To-Hover Flight Of Fixed-Wing Uavs, Brian Decimo Marchini Dec 2013

Adaptive Control Techniques For Transition-To-Hover Flight Of Fixed-Wing Uavs, Brian Decimo Marchini

Master's Theses

Fixed-wing unmanned aerial vehicles (UAVs) with the ability to hover combine the speed and endurance of traditional fixed-wing fight with the stable hovering and vertical takeoff and landing (VTOL) capabilities of helicopters and quadrotors. This combination of abilities can provide strategic advantages for UAV operators, especially when operating in urban environments where the airspace may be crowded with obstacles. Traditionally, fixed-wing UAVs with hovering capabilities had to be custom designed for specific payloads and missions, often requiring custom autopilots and unconventional airframe configurations. With recent government spending cuts, UAV operators like the military and law enforcement agencies have been urging …


Attitude Estimation For A Gravity Gradient Momentum Biased Nanosatellite, Arash Mehrparvar Oct 2013

Attitude Estimation For A Gravity Gradient Momentum Biased Nanosatellite, Arash Mehrparvar

Master's Theses

Attitude determination and estimation algorithms are developed and implemented in simulation for the Exocube satellite currently under development by PolySat at Cal Poly. A mission requirement of ±5˚ of attitude knowledge has been flowed down from the NASA Goddard developed payload, and this requirement is to be met with a basic sensor suite and the appropriate algorithms. The algorithms selected in this work are TRIAD and an Extended Kalman Filter, both of which are placed in a simulation structure along with models for orbit propagation, spacecraft kinematics and dynamics, and sensor and reference vector models. Errors inherent from sensors, orbit …


Uav Formation Flight Utilizing A Low Cost, Open Source Configuration, Christian W. Lopez Jun 2013

Uav Formation Flight Utilizing A Low Cost, Open Source Configuration, Christian W. Lopez

Master's Theses

The control of multiple unmanned aerial vehicles (UAVs) in a swarm or cooperative team scenario has been a topic of great interest for well over a decade, growing steadily with the advancements in UAV technologies. In the academic community, a majority of the studies conducted rely on simulation to test developed control strategies, with only a few institutions known to have nurtured the infrastructure required to propel multiple UAV control studies beyond simulation and into experimental testing. With the Cal Poly UAV FLOC Project, such an infrastructure was created, paving the way for future experimentation with multiple UAV control systems. …


Feasibility Of Microsatellite Active Debris Removal Systems, Karsten J. James Jun 2013

Feasibility Of Microsatellite Active Debris Removal Systems, Karsten J. James

Master's Theses

Space debris has become an increasingly hazardous obstacle to continued spaceflight operations. In an effort to mitigate this problem an investigation of the feasibility of a microsatellite active debris removal system was conducted. Through proposing a novel concept of operation, utilizing a grapple-and-tug system architecture, and by analyzing each resultant mission phase in the frame of a representative example, it was found that microsatellite scale systems are capable of fulfilling the active debris removal mission. Analysis of rendezvous, docking, control and deorbit mission requirements determined that the design of a grapple-and-tug system will be driven by sizing of the propellant …


A Gravity Gradient, Momentum-Biased Attitude Control System For A Cubesat, Ryan J. Sellers Mar 2013

A Gravity Gradient, Momentum-Biased Attitude Control System For A Cubesat, Ryan J. Sellers

Master's Theses

ExoCube is the latest National Science Foundation (NSF) funded space weather CubeSat and is a collaboration between PolySat, Scientific Solutions Inc. (SSI), the University of Wisconsin, NASA Goddard and SRI International. The 3U will carry a mass spectrometer sensor suite, EXOS, in to low earth orbit (LEO) to measure neutral and ionized particles in the exosphere and thermosphere. Measurements of neutral and ion particles are directly impacted by the angle at which they enter EXOS and which leads to pointing requirements. A combination of a gravity gradient system with a momentum bias wheel is proposed to meet pointing requirements while …


Determination Of Human Powered Helicopter Stability Characteristics Using Multi-Body System Simulation Techniques, Sean M. Brown Nov 2012

Determination Of Human Powered Helicopter Stability Characteristics Using Multi-Body System Simulation Techniques, Sean M. Brown

Master's Theses

Multi-Body System Simulation combined with System Identification was developed as a method for determining the stability characteristics of a human powered helicopter(HPH) configurations. HPH stability remains a key component for meeting competition requirements, but has not been properly treated. Traditional helicopter dynamic analysis is not suited to the HPH due to its low rotation speeds and light weight. Multi-Body System Simulation is able to generate dynamic response data for any HPH configuration. System identification and linear stability theory are used to determine the stability characteristics from the dynamic response. This thesis focuses on the method development and doesn't present any …


Control System Development For Small Uav Gimbal, Nicholas J. Brake Aug 2012

Control System Development For Small Uav Gimbal, Nicholas J. Brake

Master's Theses

The design process of unmanned ISR systems has typically driven in the direction of increasing system mass to increase stabilization performance and imagery quality. However, through the use of new sensor and processor technology high performance stabilization feedback is being made available for control on new small and low mass stabilized platforms that can be placed on small UAVs. This project develops and implements a LOS stabilization controller design, typically seen on larger gimbals, onto a new small stabilized gimbal, the Tigereye, and demonstrates the application on several small UAV aircraft. The Tigereye gimbal is a new 2lb, 2-axis, gimbal …