Open Access. Powered by Scholars. Published by Universities.®

Navigation, Guidance, Control and Dynamics Commons

Open Access. Powered by Scholars. Published by Universities.®

PDF

Theses/Dissertations

Computer Sciences

Institution
Keyword
Publication Year
Publication

Articles 1 - 22 of 22

Full-Text Articles in Navigation, Guidance, Control and Dynamics

Online Aircraft System Identification Using A Novel Parameter Informed Reinforcement Learning Method, Nathan Schaff Oct 2023

Online Aircraft System Identification Using A Novel Parameter Informed Reinforcement Learning Method, Nathan Schaff

Doctoral Dissertations and Master's Theses

This thesis presents the development and analysis of a novel method for training reinforcement learning neural networks for online aircraft system identification of multiple similar linear systems, such as all fixed wing aircraft. This approach, termed Parameter Informed Reinforcement Learning (PIRL), dictates that reinforcement learning neural networks should be trained using input and output trajectory/history data as is convention; however, the PIRL method also includes any known and relevant aircraft parameters, such as airspeed, altitude, center of gravity location and/or others. Through this, the PIRL Agent is better suited to identify novel/test-set aircraft.

First, the PIRL method is applied to …


Assessing The Performance Of A Particle Swarm Optimization Mobility Algorithm In A Hybrid Wi-Fi/Lora Flying Ad Hoc Network, William David Paredes Jan 2023

Assessing The Performance Of A Particle Swarm Optimization Mobility Algorithm In A Hybrid Wi-Fi/Lora Flying Ad Hoc Network, William David Paredes

UNF Graduate Theses and Dissertations

Research on Flying Ad-Hoc Networks (FANETs) has increased due to the availability of Unmanned Aerial Vehicles (UAVs) and the electronic components that control and connect them. Many applications, such as 3D mapping, construction inspection, or emergency response operations could benefit from an application and adaptation of swarm intelligence-based deployments of multiple UAVs. Such groups of cooperating UAVs, through the use of local rules, could be seen as network nodes establishing an ad-hoc network for communication purposes.

One FANET application is to provide communication coverage over an area where communication infrastructure is unavailable. A crucial part of a FANET implementation is …


Scheduling, Complexity, And Solution Methods For Space Robot On-Orbit Servicing, Susan E. Sorenson Aug 2022

Scheduling, Complexity, And Solution Methods For Space Robot On-Orbit Servicing, Susan E. Sorenson

Graduate Theses and Dissertations

This research proposes problems, models, and solutions for the scheduling of space robot on-orbit servicing. We present the Multi-Orbit Routing and Scheduling of Refuellable On-Orbit Servicing Space Robots problem which considers on-orbit servicing across multiple orbits with moving tasks and moving refuelling depots. We formulate a mixed integer linear program model to optimize the routing and scheduling of robot servicers to accomplish on-orbit servicing tasks. We develop and demonstrate flexible algorithms for the creation of the model parameters and associated data sets. Our first algorithm creates the network arcs using orbital mechanics. We have also created a novel way to …


Artificial Intelligence, Controls, And Sensor Fusion For Optimization And Modeling Of Space Missions And Particle Accelerators, Reza Pirayeshshirazinezhad May 2022

Artificial Intelligence, Controls, And Sensor Fusion For Optimization And Modeling Of Space Missions And Particle Accelerators, Reza Pirayeshshirazinezhad

Mechanical Engineering ETDs

This PhD dissertation is devoted to developing artificial intelligence (AI) applications for space missions and particle accelerators considering constraints on the computational resources. The space mission studied in this research, the Virtual Telescope for X-ray Observations (VTXO), is the mission exploiting 2 6U-CubeSats operating in a precision formation. The goal of the VTXO project is to develop a space-based, X-ray imaging telescope with high angular resolution precision. VTXO space mission is designed and the mission is optimized to increase the performance of the mission. Trajectory optimization with AI, hybrid control, control algorithms, and high performance computing are all used to …


Delayed Authentication System For Civilian Satellite, Sean M. Feschak Mar 2021

Delayed Authentication System For Civilian Satellite, Sean M. Feschak

Theses and Dissertations

This thesis presents the feasibility of a Delayed Authentication System (DAS) for civilian satellite navigation (satnav) receivers. In satnav systems, encrypted signal components are transmitted synchronously with civilian components. Hence, the civilian signals can be authenticated by detecting the presence of encrypted signal components within the received signal. To authenticate, a reference station transmits estimated encrypted signal spreading code symbols processed using a high gain antenna. In this thesis, it is shown that a 1-meter diameter dish antenna is adequate to provide a high probability of successful authentication, thereby reducing overall system complexity and cost.


Optimizing A Bank Of Kalman Filters For Navigation Integrity, Luis E. Sepulveda Mar 2021

Optimizing A Bank Of Kalman Filters For Navigation Integrity, Luis E. Sepulveda

Theses and Dissertations

Alternative navigation is an area of research which employs a variety of sensor technologies to provide a navigation solution in Global Navigation Satellite System degraded or denied environments. The Autonomy and Navigation Technology Center at the Air Force Institute of Technology has recently developed the Autonomous and Resilient Management of All-source Sensors (ARMAS) navigation framework which utilizes an array of Kalman Filters to provide a navigation solution resilient to sensor failures. The Kalman Filter array size increases exponentially as system sensors and detectable faults are scaled up, which in turn increases the computational power required to run ARMAS in areal-world …


Relational Database Design And Multi-Objective Database Queries For Position Navigation And Timing Data, Sean A. Mochocki Mar 2020

Relational Database Design And Multi-Objective Database Queries For Position Navigation And Timing Data, Sean A. Mochocki

Theses and Dissertations

Performing flight tests is a natural part of researching cutting edge sensors and filters for sensor integration. Unfortunately, tests are expensive, and typically take many months of planning. A sensible goal would be to make previously collected data readily available to researchers for future development. The Air Force Institute of Technology (AFIT) has hundreds of data logs potentially available to aid in facilitating further research in the area of navigation. A database would provide a common location where older and newer data sets are available. Such a database must be able to store the sensor data, metadata about the sensors, …


Object Detection With Deep Learning To Accelerate Pose Estimation For Automated Aerial Refueling, Andrew T. Lee Mar 2020

Object Detection With Deep Learning To Accelerate Pose Estimation For Automated Aerial Refueling, Andrew T. Lee

Theses and Dissertations

Remotely piloted aircraft (RPAs) cannot currently refuel during flight because the latency between the pilot and the aircraft is too great to safely perform aerial refueling maneuvers. However, an AAR system removes this limitation by allowing the tanker to directly control the RP A. The tanker quickly finding the relative position and orientation (pose) of the approaching aircraft is the first step to create an AAR system. Previous work at AFIT demonstrates that stereo camera systems provide robust pose estimation capability. This thesis first extends that work by examining the effects of the cameras' resolution on the quality of pose …


Fast Decision-Making Under Time And Resource Constraints, Kyle Gabriel Lassak Jan 2020

Fast Decision-Making Under Time And Resource Constraints, Kyle Gabriel Lassak

Graduate Theses, Dissertations, and Problem Reports

Practical decision makers are inherently limited by computational and memory resources as well as the time available in which to make decisions. To cope with these limitations, humans actively seek methods which limit their resource demands by exploiting structure within the environment and exploiting a coupling between their sensing and actuation to form heuristics for fast decision-making. To date, such behavior has not been replicated in artificial agents. This research explores how heuristics may be incorporated into the decision-making process to quickly make high-quality decisions through the analysis of a prominent case study: the outfielder problem. In the outfielder problem, …


Autonomous Watercraft Simulation And Programming, Nicholas J. Savino May 2019

Autonomous Watercraft Simulation And Programming, Nicholas J. Savino

Undergraduate Theses and Capstone Projects

Automation of various modes of transportation is thought to make travel more safe and efficient. Over the past several decades advances to semi-autonomous and autonomous vehicles have led to advanced autopilot systems on planes and boats and an increasing popularity of self-driving cars. We simulated the motion of an autonomous vehicle using computational models. The simulation models the motion of a small-scale watercraft, which can then be built and programmed using an Arduino Microcontroller. We examined different control methods for a simulated rescue craft to reach a target. We also examined the effects of different factors, such as various biases …


Performance Analysis Of Angle Of Arrival Algorithms Applied To Radiofrequency Interference Direction Finding, Taylor S. Barber Mar 2019

Performance Analysis Of Angle Of Arrival Algorithms Applied To Radiofrequency Interference Direction Finding, Taylor S. Barber

Theses and Dissertations

Radiofrequency (RF) interference threatens the functionality of systems that increasingly underpin the daily function of modern society. In recent years there have been multiple incidents of intentional RF spectrum denial using terrestrial interference sources. Because RF based systems are used in safety-of-life applications in both military and civilian contexts, there is need for systems that can quickly locate these interference sources. In order to meet this need, the Air Force Research Laboratory Weapons Directorate is sponsoring the following research to support systems that will be able to quickly geolocate RF interferers using passive angle-of-arrival estimation to triangulate interference sources. This …


Cyber-Attack Drone Payload Development And Geolocation Via Directional Antennae, Clint M. Bramlette Mar 2019

Cyber-Attack Drone Payload Development And Geolocation Via Directional Antennae, Clint M. Bramlette

Theses and Dissertations

The increasing capabilities of commercial drones have led to blossoming drone usage in private sector industries ranging from agriculture to mining to cinema. Commercial drones have made amazing improvements in flight time, flight distance, and payload weight. These same features also offer a unique and unprecedented commodity for wireless hackers -- the ability to gain ‘physical’ proximity to a target without personally having to be anywhere near it. This capability is called Remote Physical Proximity (RPP). By their nature, wireless devices are largely susceptible to sniffing and injection attacks, but only if the attacker can interact with the device via …


Integrity Monitoring For Automated Aerial Refueling: A Stereo Vision Approach, Thomas R. Stuart Mar 2018

Integrity Monitoring For Automated Aerial Refueling: A Stereo Vision Approach, Thomas R. Stuart

Theses and Dissertations

Unmanned aerial vehicles (UAVs) increasingly require the capability to y autonomously in close formation including to facilitate automated aerial refueling (AAR). The availability of relative navigation measurements and navigation integrity are essential to autonomous relative navigation. Due to the potential non-availability of the global positioning system (GPS) during military operations, it is highly desirable that relative navigation can be accomplished without the use of GPS. This paper develops two algorithms designed to provide relative navigation measurements solely from a stereo image pair. These algorithms were developed and analyzed in the context of AAR using a stereo camera system modeling that …


A Usability And Learnability Case Study Of Glass Flight Deck Interfaces And Pilot Interactions Through Scenario-Based Training, Thomas James De Cino Jan 2016

A Usability And Learnability Case Study Of Glass Flight Deck Interfaces And Pilot Interactions Through Scenario-Based Training, Thomas James De Cino

CCE Theses and Dissertations

In the aviation industry, digitally produced and presented flight, navigation, and aircraft information is commonly referred to as glass flight decks. Glass flight decks are driven by computer-based subsystems and have long been a part of military and commercial aviation sectors. Over the past 15 years, the General Aviation (GA) sector of the aviation industry has become a recent beneficiary of the rapid advancement of computer-based glass flight deck (GFD) systems.

While providing the GA pilot considerable enhancements in the quality of information about the status and operations of the aircraft, training pilots on the use of glass flight decks …


A Mathematical Framework For Unmanned Aerial Vehicle Obstacle Avoidance, Sorathan Chaturapruek Jan 2014

A Mathematical Framework For Unmanned Aerial Vehicle Obstacle Avoidance, Sorathan Chaturapruek

HMC Senior Theses

The obstacle avoidance navigation problem for Unmanned Aerial Vehicles (UAVs) is a very challenging problem. It lies at the intersection of many fields such as probability, differential geometry, optimal control, and robotics. We build a mathematical framework to solve this problem for quadrotors using both a theoretical approach through a Hamiltonian system and a machine learning approach that learns from human sub-experts' multiple demonstrations in obstacle avoidance. Prior research on the machine learning approach uses an algorithm that does not incorporate geometry. We have developed tools to solve and test the obstacle avoidance problem through mathematics.


Integrated Collision Avoidance System Sensor Evaluation Final Design Project, Alex F. Graebe, Bridgette S. Kimball, Drew T. Lavoise Jun 2013

Integrated Collision Avoidance System Sensor Evaluation Final Design Project, Alex F. Graebe, Bridgette S. Kimball, Drew T. Lavoise

Mechanical Engineering

Following the development of Aircraft Collision Avoidance Technology (ACAT) by the National Aeronautics and Space Administration (NASA), a need arose to transition the life-saving technology to aid the general aviation community. Considering the realistic cost of implementation, it was decided that the technology should be adapted to function on any smartphone, using that device as an end-to-end solution to sense, process, and alert the pilot to imminent threats. In September of 2012, the SAS (Sense and Survive) Senior Project Team at California Polytechnic University (Cal Poly), San Luis Obispo was assigned the task of using smartphone technology to accurately sense …


Kernelized Locality-Sensitive Hashing For Fast Image Landmark Association, Mark A. Weems Mar 2011

Kernelized Locality-Sensitive Hashing For Fast Image Landmark Association, Mark A. Weems

Theses and Dissertations

As the concept of war has evolved, navigation in urban environments where GPS may be degraded is increasingly becoming more important. Two existing solutions are vision-aided navigation and vision-based Simultaneous Localization and Mapping (SLAM). The problem, however, is that vision-based navigation techniques can require excessive amounts of memory and increased computational complexity resulting in a decrease in speed. This research focuses on techniques to improve such issues by speeding up and optimizing the data association process in vision-based SLAM. Specifically, this work studies the current methods that algorithms use to associate a current robot pose to that of one previously …


Turn Constrained Path Planning Problems, Victor M. Roman May 2009

Turn Constrained Path Planning Problems, Victor M. Roman

UNLV Theses, Dissertations, Professional Papers, and Capstones

We consider the problem of constructing multiple disjoint paths connecting a source point s to a target point t in a geometric graph. We require that the paths do not have any sharp turn angles. We present a review of turn constrained path planning algorithms and also algorithms for constructing disjoint paths. We then combine these techniques and present an O(nlogn) time algorithm for constructing a pair of edge disjoint turn constrained paths connecting two nodes in a planar geometric graph. We also consider the development of a turn constrained shortest path map in the presence of …


Development And Testing Of A High-Speed Real-Time Kinematic Precise Dgps Positioning System Between Two Aircraft, Christopher J. Spinelli Sep 2006

Development And Testing Of A High-Speed Real-Time Kinematic Precise Dgps Positioning System Between Two Aircraft, Christopher J. Spinelli

Theses and Dissertations

This research involves the design, implementation, and testing of a high-speed, real-time kinematic, precise differential GPS positioning system for use in airborne applications such as automated aerial-refueling and close formation flying. Although many of the current ambiguity resolution techniques use the residuals from the least squares position estimation to determine the true ambiguity set, this thesis presents a novel approach to the ambiguity resolution problem, called the minimum indicator. Instead of assuming the ambiguity set with the lowest residuals is the true set, other special characteristics of the residuals are examined. This increases the confidence that the algorithm has selected …


Operator State Estimation For Adaptive Aiding In Uninhabited Combat Air Vehicles, Christopher A. Russell Sep 2005

Operator State Estimation For Adaptive Aiding In Uninhabited Combat Air Vehicles, Christopher A. Russell

Theses and Dissertations

This research demonstrated the first closed-loop implementation of adaptive automation using operator functional state in an operationally relevant environment. In the Uninhabited Combat Air Vehicle (UCAV) environment, operators can become cognitively overloaded and their performance may decrease during mission critical events. This research demonstrates an unprecedented closed-loop system, one that adaptively aids UCAV operators based on their cognitive functional state A series of experiments were conducted to 1) determine the best classifiers for estimating operator functional state, 2) determine if physiological measures can be used to develop multiple cognitive models based on information processing demands and task type, 3) determine …


Singularity Avoidance Strategies For Satellite Mounted Manipulators Using Attitude Control, Nathan A. Titus Jun 1998

Singularity Avoidance Strategies For Satellite Mounted Manipulators Using Attitude Control, Nathan A. Titus

Theses and Dissertations

Control concepts for satellite mounted manipulators (SMM) are examined. The primary focus is on base actuated concepts, which eliminate singularity problems associated with free floating SMMs. A new form of the equations of motion for an n-link SMM is developed using a quasi coordinate form of Lagrange's Equation. Alternative free floating SMM designs are presented which eliminate dynamic singularities, but still experience difficulties due to the unactuated base. A new generic SMM controller is developed as a framework for various control concepts with and without base actuation. Momentum constrained Jacobians are shown to produce better SMM tracking than fixed base …


Pseudorandom Code Generation For Communication And Navigation System Applications, John F. Brendle Jr. Dec 1997

Pseudorandom Code Generation For Communication And Navigation System Applications, John F. Brendle Jr.

Theses and Dissertations

This research project investigated the design, construction and evaluation of a pseudorandom code generator for communication and navigation system applications. These types of codes include spreading codes, Gold codes, Jet Propulsion Laboratory (JPL) ranging codes, syncopated codes, and nonlinear codes. Such waveforms are typically used in communication and navigation system applications. The code generator uses the Stanford Telecom STEL-1032 Pseudorandom Number (PRN) coder. A coder interface was designed and constructed for manual data entry to the registers of the PRN coder. The code generator is capable of independently clocking and generating all possible codes with lengths up to 4,294,967,295 bits. …