Open Access. Powered by Scholars. Published by Universities.®

Navigation, Guidance, Control and Dynamics Commons

Open Access. Powered by Scholars. Published by Universities.®

PDF

Computer Sciences

Institution
Keyword
Publication Year
Publication
Publication Type

Articles 1 - 30 of 42

Full-Text Articles in Navigation, Guidance, Control and Dynamics

Relative Vectoring Using Dual Object Detection For Autonomous Aerial Refueling, Derek B. Worth, Jeffrey L. Choate, James Lynch, Scott L. Nykl, Clark N. Taylor Mar 2024

Relative Vectoring Using Dual Object Detection For Autonomous Aerial Refueling, Derek B. Worth, Jeffrey L. Choate, James Lynch, Scott L. Nykl, Clark N. Taylor

Faculty Publications

Once realized, autonomous aerial refueling will revolutionize unmanned aviation by removing current range and endurance limitations. Previous attempts at establishing vision-based solutions have come close but rely heavily on near perfect extrinsic camera calibrations that often change midflight. In this paper, we propose dual object detection, a technique that overcomes such requirement by transforming aerial refueling imagery directly into receiver aircraft reference frame probe-to-drogue vectors regardless of camera position and orientation. These vectors are precisely what autonomous agents need to successfully maneuver the tanker and receiver aircraft in synchronous flight during refueling operations. Our method follows a common 4-stage process …


Gnss Software Defined Radio: History, Current Developments, And Standardization Efforts, Thomas Pany, Dennis Akos, Javier Arribas, M. Zahidul H. Bhuiyan, Pau Closas, Fabio Dovis, Ignacio Fernandez-Hernandez, Carles Fernandez-Prades, Sanjeev Gunawardena, Todd Humphreys, Zaher M. Kassas, Jose A. Lopez Salcedo, Mario Nicola, Mario L. Psiaki, Alexander Rugamer, Yong-Jin Song, Jong-Hoon Won Jan 2024

Gnss Software Defined Radio: History, Current Developments, And Standardization Efforts, Thomas Pany, Dennis Akos, Javier Arribas, M. Zahidul H. Bhuiyan, Pau Closas, Fabio Dovis, Ignacio Fernandez-Hernandez, Carles Fernandez-Prades, Sanjeev Gunawardena, Todd Humphreys, Zaher M. Kassas, Jose A. Lopez Salcedo, Mario Nicola, Mario L. Psiaki, Alexander Rugamer, Yong-Jin Song, Jong-Hoon Won

Faculty Publications

Taking the work conducted by the global navigation satellite system (GNSS) software-defined radio (SDR) working group during the last decade as a seed, this contribution summarizes, for the first time, the history of GNSS SDR development. This report highlights selected SDR implementations and achievements that are available to the public or that influenced the general development of SDR. Aspects related to the standardization process of intermediate-frequency sample data and metadata are discussed, and an update of the Institute of Navigation SDR Standard is proposed. This work focuses on GNSS SDR implementations in general-purpose processors and leaves aside developments conducted on …


Online Aircraft System Identification Using A Novel Parameter Informed Reinforcement Learning Method, Nathan Schaff Oct 2023

Online Aircraft System Identification Using A Novel Parameter Informed Reinforcement Learning Method, Nathan Schaff

Doctoral Dissertations and Master's Theses

This thesis presents the development and analysis of a novel method for training reinforcement learning neural networks for online aircraft system identification of multiple similar linear systems, such as all fixed wing aircraft. This approach, termed Parameter Informed Reinforcement Learning (PIRL), dictates that reinforcement learning neural networks should be trained using input and output trajectory/history data as is convention; however, the PIRL method also includes any known and relevant aircraft parameters, such as airspeed, altitude, center of gravity location and/or others. Through this, the PIRL Agent is better suited to identify novel/test-set aircraft.

First, the PIRL method is applied to …


Statistical Approach To Quantifying Interceptability Of Interaction Scenarios For Testing Autonomous Surface Vessels, Benjamin E. Hargis, Yiannis E. Papelis Apr 2023

Statistical Approach To Quantifying Interceptability Of Interaction Scenarios For Testing Autonomous Surface Vessels, Benjamin E. Hargis, Yiannis E. Papelis

Modeling, Simulation and Visualization Student Capstone Conference

This paper presents a probabilistic approach to quantifying interceptability of an interaction scenario designed to test collision avoidance of autonomous navigation algorithms. Interceptability is one of many measures to determine the complexity or difficulty of an interaction scenario. This approach uses a combined probability model of capability and intent to create a predicted position probability map for the system under test. Then, intercept-ability is quantified by determining the overlap between the system under test probability map and the intruder’s capability model. The approach is general; however, a demonstration is provided using kinematic capability models and an odometry-based intent model.


Artificial Intelligence-Enabled Exploratory Cyber-Physical Safety Analyzer Framework For Civilian Urban Air Mobility, Md. Shirajum Munir, Sumit Howlader Dipro, Kamrul Hasan, Tariqul Islam, Sachin Shetty Jan 2023

Artificial Intelligence-Enabled Exploratory Cyber-Physical Safety Analyzer Framework For Civilian Urban Air Mobility, Md. Shirajum Munir, Sumit Howlader Dipro, Kamrul Hasan, Tariqul Islam, Sachin Shetty

VMASC Publications

Urban air mobility (UAM) has become a potential candidate for civilization for serving smart citizens, such as through delivery, surveillance, and air taxis. However, safety concerns have grown since commercial UAM uses a publicly available communication infrastructure that enhances the risk of jamming and spoofing attacks to steal or crash crafts in UAM. To protect commercial UAM from cyberattacks and theft, this work proposes an artificial intelligence (AI)-enabled exploratory cyber-physical safety analyzer framework. The proposed framework devises supervised learning-based AI schemes such as decision tree, random forests, logistic regression, K-nearest neighbors (KNN), and long short-term memory (LSTM) for predicting and …


Assessing The Performance Of A Particle Swarm Optimization Mobility Algorithm In A Hybrid Wi-Fi/Lora Flying Ad Hoc Network, William David Paredes Jan 2023

Assessing The Performance Of A Particle Swarm Optimization Mobility Algorithm In A Hybrid Wi-Fi/Lora Flying Ad Hoc Network, William David Paredes

UNF Graduate Theses and Dissertations

Research on Flying Ad-Hoc Networks (FANETs) has increased due to the availability of Unmanned Aerial Vehicles (UAVs) and the electronic components that control and connect them. Many applications, such as 3D mapping, construction inspection, or emergency response operations could benefit from an application and adaptation of swarm intelligence-based deployments of multiple UAVs. Such groups of cooperating UAVs, through the use of local rules, could be seen as network nodes establishing an ad-hoc network for communication purposes.

One FANET application is to provide communication coverage over an area where communication infrastructure is unavailable. A crucial part of a FANET implementation is …


Actively Guided Cansats For Assisting Localization And Mapping In Unstructured And Unknown Environments, Cary Chun, M. Hassan Tanveer Dec 2022

Actively Guided Cansats For Assisting Localization And Mapping In Unstructured And Unknown Environments, Cary Chun, M. Hassan Tanveer

Symposium of Student Scholars

When navigating in unknown and unstructured environments, Unmanned Arial Vehicles (UAVs) can struggle when attempting to preform Simultaneous Localization and Mapping (SLAM) operations. Particularly challenging circumstance arise when an UAV may need to land or otherwise navigate through treacherous environments. As the primary UAV may be too large and unwieldly to safely investigate in these types of situations, this research effort proposes the use of actively guided CanSats for assisting in localization and mapping of unstructured environments. A complex UAV could carry multiple of these SLAM capable CanSats, and when additional mapping and localization capabilities where required, the CanSat would …


Scheduling, Complexity, And Solution Methods For Space Robot On-Orbit Servicing, Susan E. Sorenson Aug 2022

Scheduling, Complexity, And Solution Methods For Space Robot On-Orbit Servicing, Susan E. Sorenson

Graduate Theses and Dissertations

This research proposes problems, models, and solutions for the scheduling of space robot on-orbit servicing. We present the Multi-Orbit Routing and Scheduling of Refuellable On-Orbit Servicing Space Robots problem which considers on-orbit servicing across multiple orbits with moving tasks and moving refuelling depots. We formulate a mixed integer linear program model to optimize the routing and scheduling of robot servicers to accomplish on-orbit servicing tasks. We develop and demonstrate flexible algorithms for the creation of the model parameters and associated data sets. Our first algorithm creates the network arcs using orbital mechanics. We have also created a novel way to …


Robust Error Estimation Based On Factor-Graph Models For Non-Line-Of-Sight Localization, O. Arda Vanli, Clark N. Taylor Jan 2022

Robust Error Estimation Based On Factor-Graph Models For Non-Line-Of-Sight Localization, O. Arda Vanli, Clark N. Taylor

Faculty Publications

This paper presents a method to estimate the covariances of the inputs in a factor-graph formulation for localization under non-line-of-sight conditions. A general solution based on covariance estimation and M-estimators in linear regression problems, is presented that is shown to give unbiased estimators of multiple variances and are robust against outliers. An iteratively re-weighted least squares algorithm is proposed to jointly compute the proposed variance estimators and the state estimates for the nonlinear factor graph optimization. The efficacy of the method is illustrated in a simulation study using a robot localization problem under various process and measurement models and measurement …


Delayed Authentication System For Civilian Satellite, Sean M. Feschak Mar 2021

Delayed Authentication System For Civilian Satellite, Sean M. Feschak

Theses and Dissertations

This thesis presents the feasibility of a Delayed Authentication System (DAS) for civilian satellite navigation (satnav) receivers. In satnav systems, encrypted signal components are transmitted synchronously with civilian components. Hence, the civilian signals can be authenticated by detecting the presence of encrypted signal components within the received signal. To authenticate, a reference station transmits estimated encrypted signal spreading code symbols processed using a high gain antenna. In this thesis, it is shown that a 1-meter diameter dish antenna is adequate to provide a high probability of successful authentication, thereby reducing overall system complexity and cost.


Optimizing A Bank Of Kalman Filters For Navigation Integrity, Luis E. Sepulveda Mar 2021

Optimizing A Bank Of Kalman Filters For Navigation Integrity, Luis E. Sepulveda

Theses and Dissertations

Alternative navigation is an area of research which employs a variety of sensor technologies to provide a navigation solution in Global Navigation Satellite System degraded or denied environments. The Autonomy and Navigation Technology Center at the Air Force Institute of Technology has recently developed the Autonomous and Resilient Management of All-source Sensors (ARMAS) navigation framework which utilizes an array of Kalman Filters to provide a navigation solution resilient to sensor failures. The Kalman Filter array size increases exponentially as system sensors and detectable faults are scaled up, which in turn increases the computational power required to run ARMAS in areal-world …


Power-Over-Tether Uas Leveraged For Nearly-Indefinite Meteorological Data Acquisition, Daniel Rico, Carrick Detweiler, Francisco Muñoz-Arriola Jul 2020

Power-Over-Tether Uas Leveraged For Nearly-Indefinite Meteorological Data Acquisition, Daniel Rico, Carrick Detweiler, Francisco Muñoz-Arriola

Department of Computer Science and Engineering: Dissertations, Theses, and Student Research

Use of unmanned aerial systems (UASs) in agriculture has risen in the past decade. These systems are key to modernizing agriculture. UASs collect and elucidate data previously difficult to obtain and used to help increase agricultural efficiency and production. Typical commercial off-the-shelf (COTS) UASs are limited by small payloads and short flight times. Such limits inhibit their ability to provide abundant data at multiple spatiotemporal scales. In this paper, we describe the design and construction of the tethered aircraft unmanned system (TAUS), which is a novel power-over-tether UAS leveraging the physical presence of the tether to launch multiple sensors along …


Relational Database Design And Multi-Objective Database Queries For Position Navigation And Timing Data, Sean A. Mochocki Mar 2020

Relational Database Design And Multi-Objective Database Queries For Position Navigation And Timing Data, Sean A. Mochocki

Theses and Dissertations

Performing flight tests is a natural part of researching cutting edge sensors and filters for sensor integration. Unfortunately, tests are expensive, and typically take many months of planning. A sensible goal would be to make previously collected data readily available to researchers for future development. The Air Force Institute of Technology (AFIT) has hundreds of data logs potentially available to aid in facilitating further research in the area of navigation. A database would provide a common location where older and newer data sets are available. Such a database must be able to store the sensor data, metadata about the sensors, …


Object Detection With Deep Learning To Accelerate Pose Estimation For Automated Aerial Refueling, Andrew T. Lee Mar 2020

Object Detection With Deep Learning To Accelerate Pose Estimation For Automated Aerial Refueling, Andrew T. Lee

Theses and Dissertations

Remotely piloted aircraft (RPAs) cannot currently refuel during flight because the latency between the pilot and the aircraft is too great to safely perform aerial refueling maneuvers. However, an AAR system removes this limitation by allowing the tanker to directly control the RP A. The tanker quickly finding the relative position and orientation (pose) of the approaching aircraft is the first step to create an AAR system. Previous work at AFIT demonstrates that stereo camera systems provide robust pose estimation capability. This thesis first extends that work by examining the effects of the cameras' resolution on the quality of pose …


Fast Decision-Making Under Time And Resource Constraints, Kyle Gabriel Lassak Jan 2020

Fast Decision-Making Under Time And Resource Constraints, Kyle Gabriel Lassak

Graduate Theses, Dissertations, and Problem Reports

Practical decision makers are inherently limited by computational and memory resources as well as the time available in which to make decisions. To cope with these limitations, humans actively seek methods which limit their resource demands by exploiting structure within the environment and exploiting a coupling between their sensing and actuation to form heuristics for fast decision-making. To date, such behavior has not been replicated in artificial agents. This research explores how heuristics may be incorporated into the decision-making process to quickly make high-quality decisions through the analysis of a prominent case study: the outfielder problem. In the outfielder problem, …


A Co-Optimal Coverage Path Planning Method For Aerial Scanning Of Complex Structures, Zhexiong Shang, Justin Bradley, Zhigang Shen Nov 2019

A Co-Optimal Coverage Path Planning Method For Aerial Scanning Of Complex Structures, Zhexiong Shang, Justin Bradley, Zhigang Shen

Department of Construction Engineering and Management: Faculty Publications

The utilization of unmanned aerial vehicles (UAVs) in survey and inspection of civil infrastructure has been growing rapidly. However, computationally efficient solvers that find optimal flight paths while ensuring high-quality data acquisition of the complete 3D structure remains a difficult problem. Existing solvers typically prioritize efficient flight paths, or coverage, or reducing computational complexity of the algorithm – but these objectives are not co-optimized holistically. In this work we introduce a co-optimal coverage path planning (CCPP) method that simultaneously co-optimizes the UAV path, the quality of the captured images, and reducing computational complexity of the solver all while adhering to …


Autonomous Watercraft Simulation And Programming, Nicholas J. Savino May 2019

Autonomous Watercraft Simulation And Programming, Nicholas J. Savino

Undergraduate Theses and Capstone Projects

Automation of various modes of transportation is thought to make travel more safe and efficient. Over the past several decades advances to semi-autonomous and autonomous vehicles have led to advanced autopilot systems on planes and boats and an increasing popularity of self-driving cars. We simulated the motion of an autonomous vehicle using computational models. The simulation models the motion of a small-scale watercraft, which can then be built and programmed using an Arduino Microcontroller. We examined different control methods for a simulated rescue craft to reach a target. We also examined the effects of different factors, such as various biases …


Cyber-Attack Drone Payload Development And Geolocation Via Directional Antennae, Clint M. Bramlette Mar 2019

Cyber-Attack Drone Payload Development And Geolocation Via Directional Antennae, Clint M. Bramlette

Theses and Dissertations

The increasing capabilities of commercial drones have led to blossoming drone usage in private sector industries ranging from agriculture to mining to cinema. Commercial drones have made amazing improvements in flight time, flight distance, and payload weight. These same features also offer a unique and unprecedented commodity for wireless hackers -- the ability to gain ‘physical’ proximity to a target without personally having to be anywhere near it. This capability is called Remote Physical Proximity (RPP). By their nature, wireless devices are largely susceptible to sniffing and injection attacks, but only if the attacker can interact with the device via …


Performance Analysis Of Angle Of Arrival Algorithms Applied To Radiofrequency Interference Direction Finding, Taylor S. Barber Mar 2019

Performance Analysis Of Angle Of Arrival Algorithms Applied To Radiofrequency Interference Direction Finding, Taylor S. Barber

Theses and Dissertations

Radiofrequency (RF) interference threatens the functionality of systems that increasingly underpin the daily function of modern society. In recent years there have been multiple incidents of intentional RF spectrum denial using terrestrial interference sources. Because RF based systems are used in safety-of-life applications in both military and civilian contexts, there is need for systems that can quickly locate these interference sources. In order to meet this need, the Air Force Research Laboratory Weapons Directorate is sponsoring the following research to support systems that will be able to quickly geolocate RF interferers using passive angle-of-arrival estimation to triangulate interference sources. This …


Space Operations In The Suborbital Space Flight Simulator And Mission Control Center: Lessons Learned With Xcor Lynx, Pedro Llanos, Christopher Nguyen, David Williams, Kim O. Chambers Ph.D., Erik Seedhouse, Robert Davidson May 2018

Space Operations In The Suborbital Space Flight Simulator And Mission Control Center: Lessons Learned With Xcor Lynx, Pedro Llanos, Christopher Nguyen, David Williams, Kim O. Chambers Ph.D., Erik Seedhouse, Robert Davidson

Pedro J. Llanos (www.AstronauticsLlanos.com)

This study was conducted to better understand the performance of the XCOR Lynx vehicle. Because the Lynx development was halted, the best knowledge of vehicle dynamics can only be found through simulator flights. X-Plane 10 was chosen for its robust applications and accurate portrayal of dynamics on a vehicle in flight. The Suborbital Space Flight Simulator (SSFS) and Mission Control Center (MCC) were brought to the Applied Aviation Sciences department in fall 2015 at Embry-Riddle Aeronautical University, Daytona Beach campus. This academic and research tool is a department asset capable of providing multiple fields of data about suborbital simulated flights. …


Integrity Monitoring For Automated Aerial Refueling: A Stereo Vision Approach, Thomas R. Stuart Mar 2018

Integrity Monitoring For Automated Aerial Refueling: A Stereo Vision Approach, Thomas R. Stuart

Theses and Dissertations

Unmanned aerial vehicles (UAVs) increasingly require the capability to y autonomously in close formation including to facilitate automated aerial refueling (AAR). The availability of relative navigation measurements and navigation integrity are essential to autonomous relative navigation. Due to the potential non-availability of the global positioning system (GPS) during military operations, it is highly desirable that relative navigation can be accomplished without the use of GPS. This paper develops two algorithms designed to provide relative navigation measurements solely from a stereo image pair. These algorithms were developed and analyzed in the context of AAR using a stereo camera system modeling that …


Space Operations In The Suborbital Space Flight Simulator And Mission Control Center: Lessons Learned With Xcor Lynx, Pedro Llanos, Christopher Nguyen, David Williams, Kim O. Chambers Ph.D., Erik Seedhouse, Robert Davidson Jan 2018

Space Operations In The Suborbital Space Flight Simulator And Mission Control Center: Lessons Learned With Xcor Lynx, Pedro Llanos, Christopher Nguyen, David Williams, Kim O. Chambers Ph.D., Erik Seedhouse, Robert Davidson

Journal of Aviation/Aerospace Education & Research

This study was conducted to better understand the performance of the XCOR Lynx vehicle. Because the Lynx development was halted, the best knowledge of vehicle dynamics can only be found through simulator flights. X-Plane 10 was chosen for its robust applications and accurate portrayal of dynamics on a vehicle in flight. The Suborbital Space Flight Simulator (SSFS) and Mission Control Center (MCC) were brought to the Applied Aviation Sciences department in fall 2015 at Embry-Riddle Aeronautical University, Daytona Beach campus. This academic and research tool is a department asset capable of providing multiple fields of data about suborbital simulated flights. …


Long And Short-Range Air Navigation On Spherical Earth, Nihad E. Daidzic Jan 2017

Long And Short-Range Air Navigation On Spherical Earth, Nihad E. Daidzic

International Journal of Aviation, Aeronautics, and Aerospace

Global range air navigation implies non-stop flight between any two airports on Earth. Such effort would require airplanes with the operational air range of at least 12,500 NM which is about 40-60% longer than anything existing in commercial air transport today. Air transportation economy requires flying shortest distance, which in the case of spherical Earth are Orthodrome arcs. Rhumb-line navigation has little practical use in long-range flights, but has been presented for historical reasons and for comparison. Database of about 50 major international airports from every corner of the world has been designed and used in testing and route validation. …


General Solution Of The Wind Triangle Problem And The Critical Tailwind Angle, Nihad E. Daidzic Jan 2016

General Solution Of The Wind Triangle Problem And The Critical Tailwind Angle, Nihad E. Daidzic

Aviation Department Publications

A general analytical solution of the navigational wind-triangle problem and the calculation of the critical tailwind angle are presented in this study among other findings. Any crosswind component will effectively create a headwind component on fixed course tracks. The meaning of a route track is lost with excessive crosswinds representing the bifurcation point between the possible and the impossible navigational solutions. Any wind of constant direction and speed will effectively reduce groundspeed and increase time-of-flight on closed-loop multi-segment flights. Effective wind track component consists, in general, of true and induced components. The average groundspeed of multiple-leg flights is a harmonic …


A Usability And Learnability Case Study Of Glass Flight Deck Interfaces And Pilot Interactions Through Scenario-Based Training, Thomas James De Cino Jan 2016

A Usability And Learnability Case Study Of Glass Flight Deck Interfaces And Pilot Interactions Through Scenario-Based Training, Thomas James De Cino

CCE Theses and Dissertations

In the aviation industry, digitally produced and presented flight, navigation, and aircraft information is commonly referred to as glass flight decks. Glass flight decks are driven by computer-based subsystems and have long been a part of military and commercial aviation sectors. Over the past 15 years, the General Aviation (GA) sector of the aviation industry has become a recent beneficiary of the rapid advancement of computer-based glass flight deck (GFD) systems.

While providing the GA pilot considerable enhancements in the quality of information about the status and operations of the aircraft, training pilots on the use of glass flight decks …


Cooperative 3-D Map Generation Using Multiple Uavs, Andrew Erik Lawson Jun 2015

Cooperative 3-D Map Generation Using Multiple Uavs, Andrew Erik Lawson

University Scholar Projects

This report aims to demonstrate the feasibility of building a global 3-D map from multiple UAV robots in a GPS-denied, indoor environment. Presented are the design of each robot and the reasoning behind choosing its hardware and software components, the process in which a single robot obtains a individual 3-D map entirely onboard, and lastly how the mapping concept is extended to multiple robotic agents to form a global 3-D map using a centralized server. In the latter section, this report focuses on two algorithms, Online Mapping and Map Fusion, developed to facilitate the cooperative approach. A limited selection …


Scheduling Algorithm Development For An Open Source Software And Open Hardware Spacecraft, Calvin Bina, Jeremy Straub, Ronald Marsh Apr 2015

Scheduling Algorithm Development For An Open Source Software And Open Hardware Spacecraft, Calvin Bina, Jeremy Straub, Ronald Marsh

Jeremy Straub

The efficacy of each type of scheduler is assessed rela-tive to the goal of having a time and resource efficient scheduling algorithm. The scheduler must ensure suc-cessful spacecraft operations and maximize the perfor-mance of tasks relative to performance constraints and their respective due dates.


Experimental Investigation Of Stochastic Parafoil Guidance Using A Graphics Processing Unit, Nathan Slegers, Andrew Brown, Jonathan Rogers Mar 2015

Experimental Investigation Of Stochastic Parafoil Guidance Using A Graphics Processing Unit, Nathan Slegers, Andrew Brown, Jonathan Rogers

Faculty Publications - Biomedical, Mechanical, and Civil Engineering

Control of autonomous systems subject to stochastic uncertainty is a challenging task. In guided airdrop applications, random wind disturbances play a crucial role in determining landing accuracy and terrain avoidance. This paper describes a stochastic parafoil guidance system which couples uncertainty propagation with optimal control to protect against wind and parameter uncertainty in the presence of impact area obstacles. The algorithm uses real-time Monte Carlo simulation performed on a graphics processing unit (GPU) to evaluate robustness of candidate trajectories in terms of delivery accuracy, obstacle avoidance, and other considerations. Building upon prior theoretical developments, this paper explores performance of the …


A Mathematical Framework For Unmanned Aerial Vehicle Obstacle Avoidance, Sorathan Chaturapruek Jan 2014

A Mathematical Framework For Unmanned Aerial Vehicle Obstacle Avoidance, Sorathan Chaturapruek

HMC Senior Theses

The obstacle avoidance navigation problem for Unmanned Aerial Vehicles (UAVs) is a very challenging problem. It lies at the intersection of many fields such as probability, differential geometry, optimal control, and robotics. We build a mathematical framework to solve this problem for quadrotors using both a theoretical approach through a Hamiltonian system and a machine learning approach that learns from human sub-experts' multiple demonstrations in obstacle avoidance. Prior research on the machine learning approach uses an algorithm that does not incorporate geometry. We have developed tools to solve and test the obstacle avoidance problem through mathematics.


Integrated Collision Avoidance System Sensor Evaluation Final Design Project, Alex F. Graebe, Bridgette S. Kimball, Drew T. Lavoise Jun 2013

Integrated Collision Avoidance System Sensor Evaluation Final Design Project, Alex F. Graebe, Bridgette S. Kimball, Drew T. Lavoise

Mechanical Engineering

Following the development of Aircraft Collision Avoidance Technology (ACAT) by the National Aeronautics and Space Administration (NASA), a need arose to transition the life-saving technology to aid the general aviation community. Considering the realistic cost of implementation, it was decided that the technology should be adapted to function on any smartphone, using that device as an end-to-end solution to sense, process, and alert the pilot to imminent threats. In September of 2012, the SAS (Sense and Survive) Senior Project Team at California Polytechnic University (Cal Poly), San Luis Obispo was assigned the task of using smartphone technology to accurately sense …