Open Access. Powered by Scholars. Published by Universities.®

Multi-Vehicle Systems and Air Traffic Control Commons

Open Access. Powered by Scholars. Published by Universities.®

Robotics

Institution
Keyword
Publication Year
Publication
Publication Type

Articles 1 - 16 of 16

Full-Text Articles in Multi-Vehicle Systems and Air Traffic Control

Efficient Connectivity Management And Path Planning For Iot And Uav Networks, Amirahmad Chapnevis Jan 2024

Efficient Connectivity Management And Path Planning For Iot And Uav Networks, Amirahmad Chapnevis

Theses and Dissertations

This dissertation explores how to better manage resources in mobile networks, especially for enhancing the performance of Unmanned Aerial Vehicles (UAV)-supported IoT networks. We explored ways to set up a flexible communication architecture that can handle large IoT deployments by making good use of mobile core network resources like bearers and data paths. We developed strategies that meet the needs of IoT networks and enhance network performance. We also developed and tested a system that combines traffic from several mobile devices that use the same user identity and network resources within the core mobile network. We used everyday smartphones, SIM …


Accurate Indoor Navigation System Based On Imu/Lp-Mm Integrated Method Using Kalman Filter Algorithm, Abdullah Mohammed Bahasan Mar 2023

Accurate Indoor Navigation System Based On Imu/Lp-Mm Integrated Method Using Kalman Filter Algorithm, Abdullah Mohammed Bahasan

Hadhramout University Journal of Natural & Applied Sciences

Abstract

The demand for navigation systems is rapidly increasing, especially in indoor environments which the signal of GPS is not available. Therefore the Inertial Measurement Unit (IMU) system is a suitable navigation system in such indoor environments. It usually consists of three accelerometers and three gyroscopes to determine position, velocity and attitude information, respectively, without need of any external source. But this type of navigation systems has errors growth with time due to accelerometers and gyroscopes drifts. This paper introduces indoor navigation system based on integrated IMU navigation system with proposed system called Landmarks Points-Map Matching (LP-MM) system using Kalman …


Low-Cost Uav Swarm For Real-Time Object Detection Applications, Joel Valdovinos Miranda Jun 2022

Low-Cost Uav Swarm For Real-Time Object Detection Applications, Joel Valdovinos Miranda

Master's Theses

With unmanned aerial vehicles (UAVs), also known as drones, becoming readily available and affordable, applications for these devices have grown immensely. One type of application is the use of drones to fly over large areas and detect desired entities. For example, a swarm of drones could detect marine creatures near the surface of the ocean and provide users the location and type of animal found. However, even with the reduction in cost of drone technology, such applications result costly due to the use of custom hardware with built-in advanced capabilities. Therefore, the focus of this thesis is to compile an …


Formation Control With Bounded Controls And Collision Avoidance: Theory And Application To Quadrotor Unmanned Air Vehicles, Zachary S. Lippay Jan 2022

Formation Control With Bounded Controls And Collision Avoidance: Theory And Application To Quadrotor Unmanned Air Vehicles, Zachary S. Lippay

Theses and Dissertations--Mechanical Engineering

This dissertation presents new results on multi-agent formation control and applies the new control algorithms to quadrotor unmanned air vehicles. First, this dissertation presents a formation control algorithm for double-integrator agents, where the formation is time varying and the agents’ controls satisfy a priori bounds (e.g., the controls accommodate actuator saturation). The main analytic results provide sufficient conditions such that all agents converge to the desired time-varying relative positions with one another and the leader, and have a priori bounded controls (if applicable). We also present results from rotorcraft experiments that demonstrate the algorithm with time-varying formations and bounded controls. …


Modernization Of Scienttific Mathematics Formula In Technology, Iwasan D. Kejawa Ed.D, Prof. Iwasan D. Kejawa Ed.D Jul 2021

Modernization Of Scienttific Mathematics Formula In Technology, Iwasan D. Kejawa Ed.D, Prof. Iwasan D. Kejawa Ed.D

Department of Mathematics: Faculty Publications

Abstract
Is it true that we solve problem using techniques in form of formula? Mathematical formulas can be derived through thinking of a problem or situation. Research has shown that we can create formulas by applying theoretical, technical, and applied knowledge. The knowledge derives from brainstorming and actual experience can be represented by formulas. It is intended that this research article is geared by an audience of average knowledge level of solving mathematics and scientific intricacies. This work details an introductory level of simple, at times complex problems in a mathematical epidermis and computability and solvability in a Computer Science. …


Localization Algorithms For Gnss-Denied And Challenging Environments, Chizhao Yang Jan 2021

Localization Algorithms For Gnss-Denied And Challenging Environments, Chizhao Yang

Graduate Theses, Dissertations, and Problem Reports

In this dissertation, the problem about localization in GNSS-denied and challenging environments is addressed. Specifically, the challenging environments discussed in this dissertation include two different types, environments including only low-resolution features and environments containing moving objects. To achieve accurate pose estimates, the errors are always bounded through matching observations from sensors with surrounding environments. These challenging environments, unfortunately, would bring troubles into matching related methods, such as "fingerprint" matching, and ICP. For instance, in environments with low-resolution features, the on-board sensor measurements could match to multiple positions on a map, which creates ambiguity; in environments with moving objects included, the …


End To End Satellite Servicing And Space Debris Management, Aman Chandra, Himangshu Kalita, Roberto Furfaro, Jekan Thanga Feb 2019

End To End Satellite Servicing And Space Debris Management, Aman Chandra, Himangshu Kalita, Roberto Furfaro, Jekan Thanga

Space Traffic Management Conference

There is growing demand for satellite swarms and constellations for global positioning, remote sensing and relay communication in higher LEO orbits. This will result in many obsolete, damaged and abandoned satellites that will remain on-orbit beyond 25 years. These abandoned satellites and space debris maybe economically valuable orbital real-estate and resources that can be reused, repaired or upgraded for future use. Space traffic management is critical to repair damaged satellites, divert satellites into warehouse orbits and effectively deorbit satellites and space debris that are beyond repair and salvage. Current methods for on-orbit capture, servicing and repair require a large service …


Autonomous Uav Battery Swapping, Reed Jacobsen, Nikolai Ruhe, Nathan Dornback Jan 2018

Autonomous Uav Battery Swapping, Reed Jacobsen, Nikolai Ruhe, Nathan Dornback

Williams Honors College, Honors Research Projects

One of the main hindrances of unmanned aerial vehicle (UAV) technology are power constraints. One way to alleviate some power constraints would be for two UAVs to exchange batteries while both are in flight. Autonomous mid-air battery swapping will expand the scope of UAV technology by allowing for indefinite flight times and longer missions. A single board computer will control each UAV’s flight software to respond to inputs to align with each other mid-flight. When the two UAVs have joined, mechanical components will exchange a depleted battery on the worker UAV for a freshly charged battery that belongs to the …


Real Time And High Fidelity Quadcopter Tracking System, Tyler Mckay Hall Dec 2017

Real Time And High Fidelity Quadcopter Tracking System, Tyler Mckay Hall

Computer Engineering

This project was conceived as a desired to have an affordable, flexible and physically compact tracking system for high accuracy spatial and orientation tracking. Specifically, this implementation is focused on providing a low cost motion capture system for future research. It is a tool to enable the further creation of systems that would require the use of accurate placement of landing pads, payload acquires and delivery. This system will provide the quadcopter platform a coordinate system that can be used in addition to GPS.

Field research with quadcopter manufacturers, photographers, agriculture and research organizations were contact and interviewed for information …


Use Of A Small Unmanned Aerial System For The Sr-530 Mudslide Incident Near Oso, Washington, Robin Murphy, Brittany Duncan, Tyler Collins, Justin Kendrick, Patrick Lohman, Tamara Palmer, Frank Sanborn Jan 2016

Use Of A Small Unmanned Aerial System For The Sr-530 Mudslide Incident Near Oso, Washington, Robin Murphy, Brittany Duncan, Tyler Collins, Justin Kendrick, Patrick Lohman, Tamara Palmer, Frank Sanborn

School of Computing: Faculty Publications

The Center for Robot-Assisted Search and Rescue deployed three commercially available small unmanned aerial systems (SUASs)—an AirRobot AR100B quadrotor, an Insitu Scan Eagle, and a PrecisionHawk Lancaster—to the 2014 SR-530 Washington State mudslides. The purpose of the flights was to allow geologists and hydrologists to assess the eminent risk of loss of life to responders from further slides and flooding, as well as to gain a more comprehensive understanding of the event. The AirRobot AR100B in conjunction with PrecisionHawk postprocessing software created two-dimensional (2D) and 3D reconstructions of the inaccessible “moonscape” region of the slide and provided engineers with a …


The Multi-Tier Mission Architecture And A Different Approach To Entry, Descent And Landing, Jeremy Straub Jun 2013

The Multi-Tier Mission Architecture And A Different Approach To Entry, Descent And Landing, Jeremy Straub

Jeremy Straub

Planetary missions are generally very well planned out. Where the spacecraft will be deployed, what it will do there and in what order are generally determined before launch. While some allowance is made for greater depth exploration of scientifically interesting items identified during the investigation, a successful mission is (generally) one that doesn’t deviate significantly from its planning. When sending an initial mission to an unsurveyed planet or moon, however, this approach is not suitable. Current space technology provides the capability to send a combined survey and lander mission (instead of conducting an initial survey mission and following it up …


Enabling Interplanetary Small Spacecraft Science Missions With Model Based Data Analysis, Jeremy Straub Jun 2013

Enabling Interplanetary Small Spacecraft Science Missions With Model Based Data Analysis, Jeremy Straub

Jeremy Straub

Small spacecraft operating outside of Earth orbit are significantly constrained by the communica- tions link available to them. This is particularly true for stand-alone craft that must rely on their own antenna and transmission systems (for which gain and available power generation are limited by form factor); it is also applicable to ‘hitchhiker’-style missions which may be able to utilize (quite likely very limited amounts of) time on the primary spacecraft’s communications equip- ment for long-haul transmission.

This poster presents the adaptation of the Model-Based Transmission Reduction (MBTR) frame- work’s Model-Based Data Analysis (MBDA) component for use on an interplanetary …


Desktop Warfare: Robotic Collaboration For Persistent Surveillance, Situational Awareness And Combat Operations, Jeremy Straub May 2013

Desktop Warfare: Robotic Collaboration For Persistent Surveillance, Situational Awareness And Combat Operations, Jeremy Straub

Jeremy Straub

Robotic sensing and weapons platforms can be controlled from a desktop workstation on the other side of the planet from where combat is occurring. This minimizes the potential for injury to soldiers and increases operational productivity. Significant work has been undertaken and is ongoing related to the autonomous control of battlefield sensing and warfighting systems. While many aspects of these operations can be performed autonomously, in some cases it is necessary (due to technical limitations) or desirable (due to legal or political implications) to involve humans in the low-level decision making. This paper reviews a number of specific applications where …


A Human Proximity Operations System Test Case Validation Approach, Justin Huber, Jeremy Straub Mar 2013

A Human Proximity Operations System Test Case Validation Approach, Justin Huber, Jeremy Straub

Jeremy Straub

A Human Proximity Operations System (HPOS) poses numerous risks in a real world environment. These risks range from mundane tasks such as avoiding walls and fixed obstacles to the critical need to keep people and processes safe in the context of the HPOS’s situation-specific decision making. Validating the performance of an HPOS, which must operate in a real-world environment, is an ill posed problem due to the complexity that is introduced by erratic (non-computer) actors. In order to prove the HPOS’s usefulness, test cases must be generated to simulate possible actions of these actors, so the HPOS can be shown …


Multi-Tier Exploration Concept Demonstration Mission, Jeremy Straub May 2012

Multi-Tier Exploration Concept Demonstration Mission, Jeremy Straub

Jeremy Straub

A multi-tier, multi-craft mission architecture has been proposed but, despite its apparent promise, limited use and testing of the architecture has been conducted. This paper proposes and details a mission concept and its implementation for testing this architecture in the terrestrial environment. It is expected that this testing will allow significant refinement of the proposed architecture as well as providing data on its suitability for use in both terrestrial and extra-terrestrial applications. Logistical and technical challenges with this testing are discussed.


A Midsummer Night’S Dream (With Flying Robots), Robin Murphy, Dylan Shell, Amy Guerin, Brittany Duncan, Benjamin Fine, Kevin Pratt, Takis Zourntos Jan 2011

A Midsummer Night’S Dream (With Flying Robots), Robin Murphy, Dylan Shell, Amy Guerin, Brittany Duncan, Benjamin Fine, Kevin Pratt, Takis Zourntos

School of Computing: Faculty Publications

Seven flying robot “fairies” joined human actors in the Texas A&M production of William Shakespeare’s A Midsummer Night’s Dream. The production was a collaboration between the departments of Computer Science and Engineering, Electrical and Computer Engineering, and Theater Arts. The collaboration was motivated by two assertions. First, that the performing arts have principles for creating believable agents that will transfer to robots. Second, the theater is a natural testbed for evaluating the response of untrained human groups (both actors and the audience) to robots interacting with humans in shared spaces, i.e., were believable agents created? The production used two types …