Open Access. Powered by Scholars. Published by Universities.®

Aerodynamics and Fluid Mechanics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Aerodynamics and Fluid Mechanics

Investigation Into Wedge Turbulator Effects In High Aspect Ratio Cooling Channels, Daniel Garcia Dec 2021

Investigation Into Wedge Turbulator Effects In High Aspect Ratio Cooling Channels, Daniel Garcia

Electronic Theses and Dissertations, 2020-

With reusability being a novel design parameter for liquid rocket engines (LRE), the need to lower internal wall temperatures for an increased engine longevity is a desired outcome. One of the mechanisms that has been effectively implemented is the use of high aspect ratio cooling channels (HARCC) to promote fin-like effects from internal cooling channel sidewalls. In the gas turbine industry, the use of wedge turbulators has gained recognition for its heat augmentation properties with relatively low pressure drop penalty. In an ideal case, LRE's could adopt the wedge turbulator cooling technique to enhance the benefits of HARCC with minimal …


Optimization Of A Wing Supporting A Coaxial Rotor For Multiple Flight Conditions, Tadd Yeager Jan 2021

Optimization Of A Wing Supporting A Coaxial Rotor For Multiple Flight Conditions, Tadd Yeager

Electronic Theses and Dissertations, 2020-

Rotor-powered drones continue to grow in popularity in private and government sectors. The use of these drones in challenging environments and in high stakes applications calls for a certain level of robustness and redundancy. Often, these drones are equipped with sets of paired coaxial rotors, which not only improve the performance of the vehicle, but also ensure that a failure of one motor does not constitute the failure of the whole vehicle. Some applications such as extraterrestrial exploration, which use these coaxial rotors, can benefit from a wing shaped rotor arm to reduce drag and increase lift, extending mission lifetime. …


Bicycle Wheel Aerodynamics Predictions Using Cfd: Efficiency Using Blade Element Method, Drew Vigne Jan 2021

Bicycle Wheel Aerodynamics Predictions Using Cfd: Efficiency Using Blade Element Method, Drew Vigne

Honors Undergraduate Theses

The cycling industry has long relied on expensive wind tunnel testing when designing aerodynamic products, particularly in the context of wheels which account for 10 to 15 percent of a cyclist's total aerodynamic drag. With the recent advent of Computational Fluid Dynamics (CFD), the industry now has an economical tool to supplement the wheel design process; however, the complex nature of rotating spoked wheels requires high resolution meshes to model at acceptable fidelity. This research investigates an alternative CFD method that lowers the computational cost of modeling aerodynamic bicycle wheels by modeling spokes using Blade Element Method (BEM). Two CFD …


Numerical Modeling Of Shockwave Initiated Combustion Of A Hydrogen-Oxygen Mixture Within A Shock Tube, Reed Forehand Jan 2021

Numerical Modeling Of Shockwave Initiated Combustion Of A Hydrogen-Oxygen Mixture Within A Shock Tube, Reed Forehand

Electronic Theses and Dissertations, 2020-

Shock tubes are as close to an ideal reactor as most modern experiments can attain to examine chemical kinetics. As reaction temperatures drop, homogeneous combustion within a shock tube begins to exhibit inhomogeneous modes, which in a typical Hydrogen-Oxygen system are ex- pressed as deflagration to detonation transition. Experimental results of such a system in the Uni- versity of Central Florida's low-pressure shock tube have been collected through end and side-wall imaging to analyze flame structure and chemical kinetics. The purpose of this work is to con- duct a baselining of these results using both chemical and computational fluid dynamics …


Computational Studies For Extending Understanding Of Complex Droplet Breakup Mechanisms, Caroline Anderson Jan 2021

Computational Studies For Extending Understanding Of Complex Droplet Breakup Mechanisms, Caroline Anderson

Electronic Theses and Dissertations, 2020-

Conventional methods of classifying droplet breakup are evaluated in the context of unique variation in environmental and droplet fluid conditions. Most characterization is developed for subsonic speeds and Newtonian fluids, so this study extends understanding on how these forms change to a span of applications outside these conditions. Presented examples include the impact effects on hypersonic vehicles travelling through precipitation, where even smallest of rain drops at such speeds can cause damage. Before the droplet even reaches the vehicle, it interacts with the detached bow shock that leads it. Another example of exceptional recent concern is risk of viral transmission …