Open Access. Powered by Scholars. Published by Universities.®

Aerodynamics and Fluid Mechanics Commons

Open Access. Powered by Scholars. Published by Universities.®

Theses/Dissertations

Computational fluid dynamics

Physical Sciences and Mathematics

Articles 1 - 2 of 2

Full-Text Articles in Aerodynamics and Fluid Mechanics

Dust Control Examination Using Computational Fluid Dynamics Modeling And Laboratory Testing Of Vortecone And Impingement Screen Filters, Ashish R. Kumar Jan 2018

Dust Control Examination Using Computational Fluid Dynamics Modeling And Laboratory Testing Of Vortecone And Impingement Screen Filters, Ashish R. Kumar

Theses and Dissertations--Mining Engineering

Heavy industries, such as mining, generate dust in quantities that present an occupational health hazard. Prolonged exposure to the respirable dust has been found to result in many irreversible occupational ailments in thousands of miners. In underground mining applications, a variety of scrubbing systems are used to remove dust near the zones of generation. However, the wire-mesh type fibrous screens in the flooded-bed dust scrubbers used on continuous miners, are prone to clogging due to the accumulation of dust particles. This clogging results in a reduced capture efficiency and a higher exposure to the personnel. This research establishes the Vortecone, …


Three-Dimensional Aerodynamic Design Optimization Using Discrete Sensitivity Analysis And Parallel Computing, Amidu Olawale Oloso Apr 1997

Three-Dimensional Aerodynamic Design Optimization Using Discrete Sensitivity Analysis And Parallel Computing, Amidu Olawale Oloso

Mechanical & Aerospace Engineering Theses & Dissertations

A hybrid automatic differentiation/incremental iterative method was implemented in the general purpose advanced computational fluid dynamics code (CFL3D Version 4.1) to yield a new code (CFL3D.ADII) that is capable of computing consistently discrete first order sensitivity derivatives for complex geometries. With the exception of unsteady problems, the new code retains all the useful features and capabilities of the original CFL3D flow analysis code. The superiority of the new code over a carefully applied method of finite-differences is demonstrated.

A coarse grain, scalable, distributed-memory, parallel version of CFL3D.ADII was developed based on "derivative stripmining". In this data-parallel approach, an identical copy …