Open Access. Powered by Scholars. Published by Universities.®

Aerodynamics and Fluid Mechanics Commons

Open Access. Powered by Scholars. Published by Universities.®

Dissertations

Discipline
Institution
Keyword
Publication Year

Articles 1 - 13 of 13

Full-Text Articles in Aerodynamics and Fluid Mechanics

Depressurization Characteristics Of Steam-Based Reciprocating Vacuum Pump, Hongling Deng Dec 2023

Depressurization Characteristics Of Steam-Based Reciprocating Vacuum Pump, Hongling Deng

Dissertations

This dissertation introduces a novel vacuum technology that leverages low-pressure saturated steam and cooling-controlled condensation, offering an efficient way to utilize low-grade thermal energy sources like waste heat, steam, or solar energy. At the heart of this technology is a unique duo-chamber vacuum pump system, featuring a reciprocating piston and a heat-conductive wall, designed to generate a vacuum through steam-condensation and cooling processes.

The core of this research lies in developing and validating mechanistic models for the steam-condensation depressurization process, a complex phenomenon involving phase change and transport mechanisms. Prior to this work, these mechanisms were not sufficiently modeled or …


Low-Reynolds-Number Locomotion Via Reinforcement Learning, Yuexin Liu Aug 2022

Low-Reynolds-Number Locomotion Via Reinforcement Learning, Yuexin Liu

Dissertations

This dissertation summarizes computational results from applying reinforcement learning and deep neural network to the designs of artificial microswimmers in the inertialess regime, where the viscous dissipation in the surrounding fluid environment dominates and the swimmer’s inertia is completely negligible. In particular, works in this dissertation consist of four interrelated studies of the design of microswimmers for different tasks: (1) a one-dimensional microswimmer in free-space that moves towards the target via translation, (2) a one-dimensional microswimmer in a periodic domain that rotates to reach the target, (3) a two-dimensional microswimmer that switches gaits to navigate to the designated targets in …


Channeling Influence On Noise And Aerodynamic Performance Of Naca 0012 Airfoil As A Possible Solution Of Wind Turbines Noise, Hussein Khudhayer Mohammad Jun 2022

Channeling Influence On Noise And Aerodynamic Performance Of Naca 0012 Airfoil As A Possible Solution Of Wind Turbines Noise, Hussein Khudhayer Mohammad

Dissertations

This work numerically and experimentally investigates the effect of using channels inside airfoils on the noise level as a possible resolution for aerodynamic noise generated by wind turbines. The work also investigates aerodynamic performance and turbulence around the employed airfoils. The results reveal that some of the samples show some improvement in reducing the aerodynamic noise. The reduction of the aerodynamic noise is explained as the trailing edge blowing injection that reduces the wake momentum deficit of the blade and reduces the pressure fluctuation which is responsible for noise production. Particularly, the angles of channel inclination with respect to the …


Modeling Dewetting, Demixing, And Thermal Effects In Nanoscale Metal Films, Ryan Howard Allaire Aug 2021

Modeling Dewetting, Demixing, And Thermal Effects In Nanoscale Metal Films, Ryan Howard Allaire

Dissertations

Thin film dynamics, particularly on the nanoscale, is a topic of extensive interest. The process by which thin liquids evolve is far from trivial and can lead to dewetting and drop formation. Understanding this process involves not only resolving the fluid mechanical aspects of the problem, but also requires the coupling of other physical processes, including liquid-solid interactions, thermal transport, and dependence of material parameters on temperature and material composition. The focus of this dissertation is on the mathematical modeling and simulation of nanoscale liquid metal films, which are deposited on thermally conductive substrates, liquefied by laser heating, and subsequently …


Modeling And Design Optimization For Membrane Filters, Yixuan Sun Aug 2021

Modeling And Design Optimization For Membrane Filters, Yixuan Sun

Dissertations

Membrane filtration is widely used in many applications, ranging from industrial processes to everyday living activities. With growing interest from both industrial and academic sectors in understanding the various types of filtration processes in use, and in improving filter performance, the past few decades have seen significant research activity in this area. Experimental studies can be very valuable, but are expensive and time-consuming, therefore theoretical studies offer potential as a cost-effective and predictive way to improve on current filter designs. In this work, mathematical models, derived from first principles and simplified using asymptotic analysis, are proposed for: (1) pleated membrane …


Dances And Escape Of The Vortex Quartet, Brandon Behring Dec 2020

Dances And Escape Of The Vortex Quartet, Brandon Behring

Dissertations

This dissertation considers the linear stability of a one-parameter family of periodic solutions of the four-vortex problem known as 'leapfrogging' orbits. These solutions, which consist of two pairs of identical yet oppositely-signed vortices, were known to W. Gröbli (1877) and A. E. H. Love (1883) and can be parameterized by a dimensionless parameter related to the geometry of the initial configuration. Simulations by Acheson and numerical Floquet analysis by Tophøj and Aref both indicate, to many digits, that the bifurcation occurs at a value related to the inverse square of the golen ratio. Acheson observed that, after an initial period …


Resonant Triad Interactions In One And Two-Layer Systems, Malik Chabane Aug 2020

Resonant Triad Interactions In One And Two-Layer Systems, Malik Chabane

Dissertations

This dissertation is a study of the weakly nonlinear resonant interactions of a triad of gravity-capillary waves in systems of one and two fluid layers of arbitrary depth, in one and two-dimentions. For one-layer systems, resonant triad interactions of gravity-capillary waves are considered and a region where resonant triads can be always found is identified, in the two-dimensional wavevector angles-space. Then a description of the variations of resonant wavenumbers and wave frequencies over the resonance region is given. The amplitude equations correct to second order in wave slope are used to investigate special resonant triads that, providing their initial amplitude …


Studies Of Two-Phase Flow With Soluble Surfactant, Ryan Peter Atwater Aug 2020

Studies Of Two-Phase Flow With Soluble Surfactant, Ryan Peter Atwater

Dissertations

Numerical methods are developed for accurate solution of two-phase flow in the zero Reynolds number limit of Stokes flow, when surfactant is present on a drop interface and in its bulk phase interior. The methods are designed to achieve high accuracy when the bulk Péclet number is large, or equivalently when the bulk phase surfactant has small diffusivity

In the limit of infinite bulk Péclet number the advection-diffusion equation that governs evolution of surfactant concentration in the bulk is singularly perturbed, indicating a separation of spatial scales. A hybrid numerical method based on a leading order asymptotic reduction in this …


A Reinforcement Learning Approach To Spacecraft Trajectory Optimization, Daniel S. Kolosa Dec 2019

A Reinforcement Learning Approach To Spacecraft Trajectory Optimization, Daniel S. Kolosa

Dissertations

This dissertation explores a novel method of solving low-thrust spacecraft targeting problems using reinforcement learning. A reinforcement learning algorithm based on Deep Deterministic Policy Gradients was developed to solve low-thrust trajectory optimization problems. The algorithm consists of two neural networks, an actor network and a critic network. The actor approximates a thrust magnitude given the current spacecraft state expressed as a set of orbital elements. The critic network evaluates the action taken by the actor based on the state and action taken. Three different types of trajectory problems were solved, a generalized orbit change maneuver, a semimajor axis change maneuver, …


Microfluidic Biosensor With Functionalized Gold Nano Particles On Interdigitated Electrodes, Bharath Babu Nunna May 2018

Microfluidic Biosensor With Functionalized Gold Nano Particles On Interdigitated Electrodes, Bharath Babu Nunna

Dissertations

The integration of the microfluidics to the biosensor has growing demand with favorable conditions such as reduced processing time and low reagent consumption. The immuno biosensing with the microfluidic platform helped to make the electrochemical biosensing assays portable due to which this sensing mechanism can be easily implemented in point of care devices. The implementation of the biosensing in the microchannels significantly reduces the sample requirement form milli liter (mL) to micro liter (uL), and thus leads to low volume sample requirement during the sensing. The primary factors contributing to the microfluidic biosensors performance are probe immobilization, specific binding and …


On The Selection Of A Good Shape Parameter For Rbf Approximation And Its Application For Solving Pdes, Lei-Hsin Kuo Aug 2015

On The Selection Of A Good Shape Parameter For Rbf Approximation And Its Application For Solving Pdes, Lei-Hsin Kuo

Dissertations

Meshless methods utilizing Radial Basis Functions~(RBFs) are a numerical method that require no mesh connections within the computational domain. They are useful for solving numerous real-world engineering problems. Over the past decades, after the 1970s, several RBFs have been developed and successfully applied to recover unknown functions and to solve Partial Differential Equations (PDEs).
However, some RBFs, such as Multiquadratic (MQ), Gaussian (GA), and Matern functions, contain a free variable, the shape parameter, c. Because c exerts a strong influence on the accuracy of numerical solutions, much effort has been devoted to developing methods for determining shape parameters which provide …


Global Skin Friction Diagnostics: The Glof Technique And Measurements Of Complex Separated Flows, Sudesh A. Woodiga Jun 2013

Global Skin Friction Diagnostics: The Glof Technique And Measurements Of Complex Separated Flows, Sudesh A. Woodiga

Dissertations

This work describes the application of the global luminescent oil film skin friction meter to quantitative global skin friction diagnostics of complex separated flows. The development of this technique is based on the relationship between the oil film thickness and luminescent intensity of a luminescent oil film. The projected thin oil film equation is given to relate the normalized luminescent intensity with skin friction. The variational formulation with a smoothness constraint on skin friction is proposed to obtain a snap shot solution from two consecutive images for a relative skin friction field. A complete skin friction field is reconstructed through …


Numerical Studies Of Transition For Flows Around Multi-Element Airfoils, Fengjun Liu Aug 2002

Numerical Studies Of Transition For Flows Around Multi-Element Airfoils, Fengjun Liu

Dissertations

The transition of flows around a multi-element airfoil has been numerically studied using RANS with a k - e two-equation transition model, LST and DNS. The transition model uses an effective eddy-viscosity by coupling an intermittence-like correction to a turbulence eddy-viscosity that can be obtained via solving a parent k - e turbulence model. The transition model is truly predictive in that it is able to predict transition onset locations without having to specify prior knowledge of the targeted transition process. The predicted transition onset locations for all the cases studied were compared with the measured data. The results suggest …